Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство:

5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 в квад­ра­те левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 125 конец дроби боль­ше или равно 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка рав­но­силь­но 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 в квад­ра­те левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те минус 3 пра­вая круг­лая скоб­ка боль­ше или равно 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка рав­но­силь­но

 

 рав­но­силь­но ло­га­рифм по ос­но­ва­нию 3 в квад­ра­те левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка в квад­ра­те минус 3 боль­ше или равно ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка рав­но­силь­но левая круг­лая скоб­ка 2 ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в квад­ра­те минус ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка минус 3\geqslant0 рав­но­силь­но
 рав­но­силь­но 4 ло­га­рифм по ос­но­ва­нию 3 в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка минус 3\geqslant0 рав­но­силь­но

 

 рав­но­силь­но со­во­куп­ность вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка \geqslant1, ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка \leqslant минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x минус 2\geqslant3,0 мень­ше x минус 2 мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 27 конец ар­гу­мен­та конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x\geqslant5,2 мень­ше x мень­ше или равно 2 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 27 конец ар­гу­мен­та конец дроби . конец со­во­куп­но­сти .

Ответ:  левая круг­лая скоб­ка 2;2 плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 27 конец ар­гу­мен­та конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 324. (часть C)
Классификатор алгебры: Ло­га­риф­ми­че­ские не­ра­вен­ства, Не­ра­вен­ства пер­вой и вто­рой сте­пе­ни от­но­си­тель­но ло­га­риф­ми­че­ской функ­ции, Не­ра­вен­ства сме­шан­но­го типа, По­ка­за­тель­ные урав­не­ния и не­ра­вен­ства
Методы алгебры: За­ме­на пе­ре­мен­ной