Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство:

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 7x в квад­ра­те минус x в кубе пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка \tfrac1 пра­вая круг­лая скоб­ка x плюс 2 левая круг­лая скоб­ка x в квад­ра­те минус 3x пра­вая круг­лая скоб­ка боль­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус x конец ар­гу­мен­та рав­но­силь­но
 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 7x в квад­ра­те минус x в кубе пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 3x пра­вая круг­лая скоб­ка боль­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка рав­но­силь­но

 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 7x в квад­ра­те минус x в кубе пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 3x пра­вая круг­лая скоб­ка \geqslant0 рав­но­силь­но
 рав­но­силь­но си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 7x в квад­ра­те минус x в кубе пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 3x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка \geqslant0,5 минус x боль­ше 0 конец си­сте­мы . рав­но­силь­но

 рав­но­силь­но си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 7x в квад­ра­те минус x в кубе минус левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 3x пра­вая круг­лая скоб­ка , зна­ме­на­тель: x плюс 2 минус 1 конец дроби \geqslant0,x мень­ше 5,x в квад­ра­те левая круг­лая скоб­ка 7 минус x пра­вая круг­лая скоб­ка боль­ше 0,x в квад­ра­те минус 3x боль­ше 0,x плюс 2 боль­ше 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: минус x в квад­ра­те плюс 15x, зна­ме­на­тель: x плюс 1 конец дроби \geqslant0, минус 2 мень­ше x мень­ше 5,x левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка боль­ше 0 конец си­сте­мы . рав­но­силь­но со­во­куп­ность вы­ра­же­ний минус 2 мень­ше x мень­ше минус 1,3 мень­ше x мень­ше 5. конец со­во­куп­но­сти .

Ответ:  левая круг­лая скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 3; 5 пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 354
Классификатор алгебры: Ир­ра­ци­о­наль­ные не­ра­вен­ства, Ло­га­риф­ми­че­ские не­ра­вен­ства, Не­ра­вен­ства с ло­га­риф­ма­ми по пе­ре­мен­но­му ос­но­ва­нию, Не­ра­вен­ства сме­шан­но­го типа, Об­ласть опре­де­ле­ния не­ра­вен­ства
Методы алгебры: Метод ин­тер­ва­лов, Ра­ци­о­на­ли­за­ция не­ра­венств. Ло­га­риф­мы