Задания
Версия для печати и копирования в MS Word
Тип 15 № 628136
i

Ре­ши­те не­ра­вен­ство: 2x боль­ше или равно ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка дробь: чис­ли­тель: 35, зна­ме­на­тель: 3 конец дроби умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x минус \tfrac12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .

Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство:

2x боль­ше или равно ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка дробь: чис­ли­тель: 35, зна­ме­на­тель: 3 конец дроби умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x минус \tfrac12 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка рав­но­силь­но 0 мень­ше дробь: чис­ли­тель: 35, зна­ме­на­тель: 3 конец дроби умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x минус \tfrac12 пра­вая круг­лая скоб­ка мень­ше или равно 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка рав­но­силь­но 0 мень­ше 35 умно­жить на 6 в сте­пе­ни x минус 12 умно­жить на 9 в сте­пе­ни x мень­ше или равно 18 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка рав­но­силь­но
 рав­но­силь­но си­сте­ма вы­ра­же­ний 35 умно­жить на 6 в сте­пе­ни x минус 12 умно­жить на 9 в сте­пе­ни x боль­ше 0,35 умно­жить на 6 в сте­пе­ни x минус 12 умно­жить на 9 в сте­пе­ни x минус 18 умно­жить на 4 в сте­пе­ни x мень­ше или равно 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний 35 минус 12 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше 0,12 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка минус 35 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x плюс 18 боль­ше или равно 0 конец си­сте­мы . рав­но­силь­но
 рав­но­силь­но си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x мень­ше дробь: чис­ли­тель: 35, зна­ме­на­тель: 12 конец дроби , со­во­куп­ность вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x мень­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби , левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше или равно дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби конец си­сте­мы . конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x мень­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби , дробь: чис­ли­тель: 9, зна­ме­на­тель: 4 конец дроби мень­ше или равно левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x мень­ше дробь: чис­ли­тель: 35, зна­ме­на­тель: 12 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x мень­ше или равно минус 1,2 мень­ше или равно x мень­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 35, зна­ме­на­тель: 12 конец дроби . конец со­во­куп­но­сти .

Ответ:  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 2; ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 35, зна­ме­на­тель: 12 конец дроби пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 388
Классификатор алгебры: Урав­не­ния сме­шан­но­го типа
Кодификатор ФИПИ/Решу ЕГЭ: