Задания
Версия для печати и копирования в MS Word
Тип 13 № 655784
i

а)  Ре­ши­те урав­не­ние  синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс x пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс x пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби .

б)  Най­ди­те все корни урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; 3 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пре­об­ра­зу­ем урав­не­ние, ис­поль­зуя фор­му­лы си­ну­са суммы и ко­си­ну­са суммы:

 синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс x пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс x пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби рав­но­силь­но синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби ко­си­нус x плюс ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби синус x минус левая круг­лая скоб­ка ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ко­си­нус x минус синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби синус x пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби рав­но­силь­но
 рав­но­силь­но дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби ко­си­нус x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби синус x минус дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби ко­си­нус x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби синус x= минус дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби рав­но­силь­но синус x= минус дробь: чис­ли­тель: ко­рень из 2 , зна­ме­на­тель: 2 конец дроби рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k , x= минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k, конец со­во­куп­но­сти . k при­над­ле­жит Z .

б)  Отберём корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; 3 Пи пра­вая квад­рат­ная скоб­ка , на три­го­но­мет­ри­че­ской окруж­но­сти. По­лу­ча­ем:  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи k : k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б)

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 458
Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на синус или ко­си­нус
Методы алгебры: Фор­му­лы сло­же­ния и вы­чи­та­ния