Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

Пре­об­ра­зу­ем не­ра­вен­ство:

 дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в квад­ра­те минус 6 x плюс 8 конец дроби умно­жить на левая круг­лая скоб­ка 25 в сте­пе­ни x минус 130 умно­жить на 5 в сте­пе­ни x плюс 625 пра­вая круг­лая скоб­ка боль­ше или равно 0 рав­но­силь­но си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 1, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка конец дроби умно­жить на левая круг­лая скоб­ка 5 в сте­пе­ни x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 в сте­пе­ни x минус 125 пра­вая круг­лая скоб­ка боль­ше или равно 0, ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка боль­ше 0 конец си­сте­мы . рав­но­силь­но
 рав­но­силь­но си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4, зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка конец дроби умно­жить на левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка боль­ше или равно 0, x плюс 1 боль­ше 1 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0 , x боль­ше 0 конец си­сте­мы . рав­но­силь­но со­во­куп­ность вы­ра­же­ний 1 мень­ше или равно x мень­ше 2, x=3, x боль­ше 4. конец со­во­куп­но­сти .

Ответ:  левая квад­рат­ная скоб­ка 1; 2 пра­вая круг­лая скоб­ка \cup левая фи­гур­ная скоб­ка 3 пра­вая фи­гур­ная скоб­ка \cup левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 460
Классификатор алгебры: Не­ра­вен­ства пер­вой и вто­рой сте­пе­ни от­но­си­тель­но по­ка­за­тель­ной функ­ции, Не­ра­вен­ства сме­шан­но­го типа, Ло­га­риф­ми­че­ские не­ра­вен­ства
Методы алгебры: Ра­ци­о­на­ли­за­ция не­ра­венств. Сте­пе­ни, Ра­ци­о­на­ли­за­ция не­ра­венств. Ло­га­риф­мы, Метод ин­тер­ва­лов