
Часы со стрелками показывают 8 часов ровно. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?
До четвертой встречи стрелок минутная должна сначала пройти 8 разделяющих их часовых делений (поскольку часы показывают 8 часов), затем 3 раза обойти полный круг, то есть пройти 36 часовых делений, и пройти последние L делений, на которые поворачивается часовая стрелка за время движения минутной. Скорость движения минутной стрелки в 12 раз больше часовой: пока часовая обходит один полный круг, минутная проходит 12 кругов. Приравняем время движения часовой и минутной стрелок до их четвертой встречи:
Часовая стрелка пройдет 4 деления, что соответствует 4 часам, то есть 240 минутам.
Ответ: 240.
Приведем арифметическое решение.
Скорость минутной стрелки 1 круг в час, а часовой — круга в час, поэтому скорость удаления или сближения стрелок равна
круга в час. Расстояние между стрелками, отсчитываемое по окружности, в начальный момент составляет 40 минут или
круга. С момента первой встречи до момента четвёртой встречи минутная стрелка должна опередить часовую на три круга. Всего
круга. Поэтому необходимое время равно
часа или 240 минут.
Приведем другое решение.
Ясно, что в первый раз стрелки встретятся между 8 и 9 часами, второй раз — между 9 и 10 часами, третий — между 10 и 11, четвертый — между 11 и 12 часами, то есть ровно в 12 часов. Таким образом, они встретятся ровно через 4 часа, что составляет 240 минут.
Помещаем решение в общем виде.
Скорость вращения часовой стрелки равна 0,5 градуса в минуту, а минутной — 6 градусов в минуту. Поэтому когда часы показывают время h часов m минут часовая стрелка повернута на 30h + 0,5m градусов, а минутная — на 6m градусов относительно 12-часового деления.
Пусть в первый раз стрелки встретятся через t1 минут. Тогда если минутная стрелка еще не опережала часовую в течение текущего часа, то 6m + 6t1 = 30h + 0,5m + 0,5t1, т. е. t1 = (60h − 11m)/11 (*). В противоположном случае получаем уравнение 6m + 6t1 = 30h + 0,5m + 0,5t1 + 360, откуда t1 = (60h − 11m + 720)/11 (**).
Пусть во второй раз стрелки встретятся через t2 минут после первого, тогда 0,5t2 = 6t2 − 360, откуда t2 = 720/11 (***). Это же верно для каждого следующего оборота.
Поэтому для встречи с номером n из (*) и (**) с учетом (***) имеем соответственно: tn = (60h − 11m + 720(n − 1))/11 или tn = (60h − 11m + 720n − 720)/11.
Аналоги к заданию № 99600: 114655 114661 114773 114785 114657 114659 114663 114665 114667 114669 ... Все
Здравствуйте! Ваше решение годится только для частных случаем. По этому образцу аналогичные задачи не решаются.
Например, № 114773: Часы со стрелками показывают 1 час 35 минут. Через сколько минут минутная стрелка в десятый раз поравняется с часовой? Получается уравнение: L/1 = (5+108+L)/12, откуда L=113/11. Не получается. Поместите, пожалуйста, другое универсальное решение.
Или задание 114661: Часы со стрелками показывают 6 часов 35 минут. Через сколько минут минутная стрелка в пятый раз поравняется с часовой?, где получилось уравнение L/1 = (11+48+L)/12, откуда L=59/11.
В задании 114773 между стрелками изначально не 5 делений, а в задании 114661 — не 11. Когда часы показывают 1 час 35 минут между стрелками 79/12 деления (см. решение в номере 114773).
Здравствуйте. По-моему, Вы не правы. Рассмотрим данный случай с нематиматической позиции. После 8 нужно отсчитать случаи, когда минутная приравнивается к часовой. Это будут 8:40, 9:45, 10:50, 11:55. Таким образом, количество пройденных минут равно 40+65+65+65=235.
Вы считаете, что часовая стрелка движется скачками, один раз в час. На самом деле, она движется непрерывно.
В арифметическом решении лучше написать «с момента первой встречи до момента четвёртой встречи минутная стрелка должна опередить часовую на три круга».
Да, написали.