≡ математика
сайты - меню - вход - новости




Вариант № 10813983

За­да­ния 14 (С2) ЕГЭ 2015

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 14 № 514243

В кубе ABCDA1B1C1D1 все рёбра равны 7. На его ребре BB1 отмечена точка K так. что KB = 4. Через точки K и C1 проведена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P : PB1 = 1 : 3, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задание 14 № 514244

Основанием прямой четырёхугольной призмы ABCDA1B1C1D1 является квадрат ABCD со стороной высота призмы равна Точка K — середина ребра BB1. Через точки K и C1 проведена плоскость α параллельная прямой BD1.

а) Докажите, что сечение призмы плоскостью α является равнобедренным треугольник.

б) Найдите периметр треугольника, являющегося сечением призмы плоскостью α.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задание 14 № 514245

В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2.

а) Докажите, что плоскость PQR перпендикулярна ребру SD.

б) Найдите расстояние от вершины D до плоскости PQR.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задание 14 № 510107

В правильной треугольной пирамиде SABC сторона основания AB равна 24, а боковое ребро SA равно 19. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.

б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.