Задания 14 (С2) ЕГЭ 2015
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
В кубе ABCDA1B1C1D1 все рёбра равны 7. На его ребре BB1 отмечена точка K так. что KB = 4. Через точки K и C1 проведена плоскость α, параллельная прямой BD1.
а) Докажите, что A1P : PB1 = 1 : 3, где P — точка пересечения плоскости α с ребром A1B1.
б) Найдите объём большей из двух частей куба, на которые он делится плоскостью α.
На следующей странице вам будет предложено проверить их самостоятельно.
Основанием прямой четырёхугольной призмы ABCDA1B1C1D1 является квадрат ABCD со стороной высота призмы равна
Точка K — середина ребра BB1. Через точки K и C1 проведена плоскость α параллельная прямой BD1.
а) Докажите, что сечение призмы плоскостью α является равнобедренным треугольник.
б) Найдите периметр треугольника, являющегося сечением призмы плоскостью α.
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырёхугольной пирамиде SABCD все рёбра равны 5. На рёбрах SA, AB, BC взяты точки P, Q, R соответственно так, что PA = AQ = RC = 2.
а) Докажите, что плоскость PQR перпендикулярна ребру SD.
б) Найдите расстояние от вершины D до плоскости PQR.
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной треугольной пирамиде SABC сторона основания AB равна 24, а боковое ребро SA равно 19. Точки M и N — середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость α делит медиану CE основания в отношении 5 : 1, считая от точки C.
б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α.
На следующей странице вам будет предложено проверить их самостоятельно.