Пробный экзамен по математике. Санкт-Петербург 2013. Вариант 2.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
В летнем лагере на каждого участника полагается 40 г сахара в день. В лагере 166 человек. Сколько килограммовых упаковок сахара понадобится на весь лагерь на 5 дней?
Ответ:
На диаграмме показана среднемесячная температура воздуха в Санкт-Петербурге за каждый месяц 1999 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько было месяцев, когда среднемесячная температура не превышала 4 градусов Цельсия.
Ответ:
Какого радиуса должна быть окружность с центром в точке P(8; 6), чтобы она касалась оси абсцисс?
Ответ:
При строительстве сельского дома можно использовать один из двух типов фундамента: каменный или бетонный. Для каменного фундамента необходимо 9 тонн природного камня и 9 мешков цемента. Для бетонного фундамента необходимо 7 тонн щебня и 50 мешков цемента. Тонна камня стоит 1 600 рублей, щебень стоит 780 рублей за тонну, а мешок цемента стоит 230 рублей. Сколько рублей будет стоить материал для фундамента, если выбрать наиболее дешевый вариант?
Ответ:
Найдите корень уравнения
Ответ:
В ромбе ABCD угол ABC равен 122°. Найдите угол ACD. Ответ дайте в градусах.
Ответ:
Найдите значение выражения при
Ответ:
На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 4].
Ответ:
Шар вписан в цилиндр. Площадь полной поверхности цилиндра равна 111. Найдите площадь поверхности шара.
На следующей странице вам будет предложено проверить их самостоятельно.
Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, пройдя отметку 10 часов, но не дойдя до отметки 1 час.
Ответ:
Ребро куба равно 6. Найдите объем треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух ребер, выходящих из одной вершины и параллельной третьему ребру, выходящему из этой же вершины.
Ответ:
Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением a км/ч 2, вычисляется по формуле Определите наименьшее ускорение, с которым должен двигаться автомобиль, чтобы, проехав один километр, приобрести скорость не менее 100 км/ч. Ответ выразите в км/ч2.
Ответ:
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 1 минуте. Ответ дайте в метрах.
Ответ:
Найдите точку максимума функции
Ответ:
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Длины ребер BC, BB1 и BA прямоугольного параллелепипеда ABCDA1B1C1D1 равны соответственно 8, 12 и 9.
а) Докажите, что расстояние от вершины до прямой
больше, чем расстояние от вершины
до прямой
б) Найдите расстояние от вершины D1 до прямой A1C.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите систему неравенств
На следующей странице вам будет предложено проверить их самостоятельно.
Стороны KM и MN треугольника KMN равны соответственно 30 и 25, а его высота MH равна 24. Найдите расстояние между центрами окружностей, вписанных в треугольники KMH и
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при которых уравнение имеет единственное решение.
На следующей странице вам будет предложено проверить их самостоятельно.
Длины сторон прямоугольника ― натуральные числа, а его периметр равен 200. Известно, что длина одной стороны прямоугольника равна n% от длины другой стороны, где n – также натуральное число.
а) Какое наибольшее значение может принимать площадь прямоугольника?
б) Какое наименьшее значение может принимать площадь прямоугольника?
в) Найдите все возможные значения, которые может принимать площадь прямоугольника, если дополнительно известно, что n>100.
На следующей странице вам будет предложено проверить их самостоятельно.