Вариант № 2479053

Проект демонстрационной версии ЕГЭ—2014 по математике.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 1 № 501870

Билет на автобус стоит 15 рублей. Какое максимальное число билетов можно будет купить на 100 рублей после повышения цены билета на 20%?


Ответ:

2
Тип 2 № 501871

На диаграмме показана среднемесячная температура воздуха (в градусах Цельсия) в Ярославле по результатам многолетних наблюдений. Найдите по диаграмме количество месяцев, когда средняя температура в Ярославле была отрицательной.


Ответ:

3
Тип 3 № 501872

Середины последовательных сторон прямоугольника, диагонали которого равны 10, соединены отрезками. Найдите периметр образовавшегося четырёхугольника.


Ответ:

4
Тип 4 № 501873

Строительная фирма планирует купить 70 м3 пеноблоков у одного из трёх поставщиков. Цены и условия доставки приведены в таблице. Сколько рублей нужно заплатить за самую дешёвую покупку с доставкой?

 

ПоставщикСтоимость пеноблоков (руб. за 1 м3 )Стоимость доставки (руб.)Дополнительные условия доставки
А2 60010 000Нет
Б2 8008 000При заказе товара на сумму свыше 150 000 рублей доставка бесплатная
В2 7008 000При заказе товара на сумму свыше 200 000 рублей доставка бесплатная

Ответ:

5
Тип 5 № 501874

Найдите корень уравнения  логарифм по основанию левая круглая скобка 3 правая круглая скобка левая круглая скобка x минус 3 правая круглая скобка =2.


Ответ:

6
Тип 6 № 501875

Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.


Ответ:

7
Тип 7 № 501876

Найдите  синус альфа , если  косинус альфа =0,6 и  Пи меньше альфа меньше 2 Пи .


Ответ:

8
Тип 8 № 501877

На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, x3, ..., x9. Среди этих точек найдите все точки, в которых производная функции f(x) отрицательна. В ответе укажите количество найденных точек.


Ответ:

9
Тип 9 № 501878

Найдите площадь осевого сечения конуса, радиус основания которого равен 3, а образующая равна 5.


Ответ:

10
Тип 10 № 501879

В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете не будет вопроса о грибах.


Ответ:

11
Тип 11 № 501880

Объем первого цилиндра равен 12 м3. У второго цилиндра высота в три раза больше, а радиус основания — в два раза меньше, чем у первого. Найдите объем второго цилиндра. Ответ дайте в кубических метрах.


Ответ:

12
Задания 8 № 501881

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость погружения батискафа вычисляется по формуле  v = c дробь: числитель: f минус f_0 , знаменатель: f плюс f_0 конец дроби , где c=1500 м/с — скорость звука в воде, f_0  — частота испускаемых импульсов, f — частота отражённого от дна сигнала, регистрируемая приёмником (в МГц). Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 2 м/с.


Ответ:

13
Задания 9 № 501882

Весной катер идёт против течения реки в  целая часть: 1, дробная часть: числитель: 2, знаменатель: 3 раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в  целая часть: 1, дробная часть: числитель: 1, знаменатель: 2 раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).


Ответ:

14
Задания 11 № 501883

Найдите наименьшее значение функции y= левая круглая скобка x минус 1 правая круглая скобка e в степени x на отрезке [−1;1]


Ответ:

15
Тип 12 № 501884

а) Решите уравнение  косинус 2x=1 минус косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби минус x правая круглая скобка .

б) Найдите все корни этого уравнения, принадлежащие промежутку  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби , минус Пи правая круглая скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задания Д9 C2 № 510030

В прямоугольном параллелепипеде ABCDA_1B_1C_1D_1, известны рёбра: AB = 3, AD = 2, AA1 = 5. Точка O принадлежит ребру BB1 и делит его в отношении 2 : 3, считая от вершины B.

а) Докажите, что сечение этого параллелепипеда плоскостью, проходящей через точки A, O и C1, является ромбом.

б) Найдите площадь этого сечения.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задания Д11 C3 № 510031

Решите систему неравенств  система выражений 4 в степени x меньше или равно 9 умножить на 2 в степени x плюс 22, \log_3 левая круглая скобка x в квадрате минус x минус 2 правая круглая скобка меньше или равно 1 плюс \log_3 дробь: числитель: x плюс 1, знаменатель: x минус 2 конец дроби . конец системы


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 13 № 510032

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 16 № 501888

Найдите все значения параметра a, при каждом из которых наименьшее значение функции f левая круглая скобка x правая круглая скобка =2ax плюс |x в квадрате минус 8x плюс 7| больше 1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

20
Тип 18 № 510033

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно −3, среднее арифметическое всех положительных из них равно 4, среднее арифметическое всех отрицательных из них равно −8.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.