≡ математика
сайты - меню - вход - новости




Вариант № 5409845

А. Ларин: Тре­ни­ро­воч­ный вариант № 62.

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задания Д5 C1 № 505724

а) Решите уравнение

б) Найдите все корни на промежутке


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д7 C2 № 505725

Дана треугольная пирамида ABCD с вершиной D, грани которой ABD и ACD — прямоугольные треугольники, ребро AD перпендикулярно медиане основания АК и AD = AK. Сечение пирамиды плоскостью, не проходящей через середины ребер AD и ВС, является равнобочная трапеция EFGH с основаниями EF и GH, причем точка Е делит ребро BD пополам, а точка G лежит на ребре АС и AG = 3GC. Найти отношение площади трапеции EFGH к площади грани BCD.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д10 C3 № 505726

Решите систему неравенств:


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д12 C4 № 505727

Площадь треугольника АВС равна 12. На прямой АС взята точка D так, что точка С является серединой отрезка AD. Точка K — середина стороны AB, прямая KD пересекает сторону BC в точке L.

a) Докажите, что BL : LC = 2 : 1.

б) Найдите площадь треугольника BLK.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д14 C6 № 505728

При каких значениях параметра p уравнение имеет больше положительных корней, чем отрицательных?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задания Д16 C7 № 505729

а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные сундуки, дать точный ответ на этот вопрос?

б) А если сундуков было восемь, а cкупой рыцарь мог разложить поровну монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.