А. Ларин: Тренировочный вариант № 26.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Найдите все корни на промежутке
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной треугольной призме ABCA1B1C1, AC = 6, AA1 = 8. Через вершину A проведена плоскость, пересекающая ребра BB1 и CC1 соответственно в точках M и N. Найти, в каком отношении эта плоскость делит объем призмы, если известно, что BM = MB1, а AN является биссектрисой угла CAC1.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите систему неравенств
На следующей странице вам будет предложено проверить их самостоятельно.
Периметр трапеции равен 112. Точка касания вписанной в трапецию окружности делит одну из боковых сторон на отрезки, равные 8 и 18. Найдите основания этой трапеции.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите множество пар чисел (a; b), для каждой из которых при всех x справедливо равенство
На следующей странице вам будет предложено проверить их самостоятельно.
В школе, где учатся Поля, Маня и Дуня, есть длинный коридор вдоль одной из стен которого расположен длинный ряд из n ячеек, занумерованных натуральными числами от 1 до n, закрывающихся на замки, в которых школьники могут хранить свои личные вещи. Однажды, придя в школу в выходной день, Поля обнаружила все ячейки открытыми. Она стала обходить ряд ячеек сначала до конца, закрывая на замок каждую вторую ячейку. Достигнув конца ряда, она развернулась и снова стала закрывать на замок каждую вторую ячейку из тех, которые еще были открыты. Таким образом Поля продолжала обходить ряд и закрывать на замок ячейки до тех пор, пока осталась незакрытой одна ячейка.
Обозначим номер последней открытой ячейки. Например, если количество ячеек
то
как показано на рисунке
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
→ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | ← | ||||||||
→ | 3 | 7 | 11 | 15 | ||||||||||||
3 | 11 | ← |
а) Найдите
Докажите, что:
б) не существует натурального числа такого что
в) существует бесконечное множество натуральных чисел таких что
На следующей странице вам будет предложено проверить их самостоятельно.