А. Ларин: Тренировочный вариант № 115.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Дано уравнение
а) Решите уравнение.
б) Найдите его корни, принадлежащие промежутку
На следующей странице вам будет предложено проверить их самостоятельно.
Ребро куба ABCDA1B1C1D1 равно 12. Точка P — середина ребра СВ, точка K лежит на ребре CD так, что KD : KC = 1 : 2. Плоскость, проходящая через точки P, K и A1 пересекает ребро DD1 в точке M.
а) Докажите, что DM : D1M = 1 : 4.
б) Найдите угол между плоскостями PKA1 и ABC.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Через вершины А и С прямоугольного треугольника ABC (∠B = 90°) проведена окружность с центром в точке О, касающаяся прямой AB и пересекающая продолжение стороны BC в точке E.
а) Докажите, что сумма углов AOE и AOC равна 180°.
б) Найдите диаметр окружности, если известно, что BE = 5, AC = 6.
На следующей странице вам будет предложено проверить их самостоятельно.
Близнецы Саша и Паша положили в банк по 50 000 рублей на три года под 10% годовых Однако через год и Саша, и Паша сняли со своих счетов соответственно 10% и 20% имеющихся денег. Еще через год каждый из них снял со своего счета соответственно 20 000 рублей и 15 000 рублей. У кого из братьев к концу третьего года на счету окажется большая сумма денег? На сколько рублей?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых система
имеет ровно одно решение.
На следующей странице вам будет предложено проверить их самостоятельно.
В футбольной команде «Метеор» 16 человек (11 основных игроков и 5 запасных). Известно, что возраст (число полных лет) у всех игроков различный, причем самому младшему 16 лет, а самому старшему 40 лет. Помощник тренера перед началом матча посчитал средний возраст всех 16 игроков команды, а во время матча — средний возраст 11 человек, вышедших на поле в основном составе.
А) Мог ли средний возраст всей команды и ее основного состава оказаться одинаковым?
Б) Мог ли средний возраст всей команды и ее основного состава отличаться ровно на 5 лет?
В) Найдите наибольшее возможное значение разности между средним возрастом всей команды и средним возрастом ее основного состава.
На следующей странице вам будет предложено проверить их самостоятельно.