А. Ларин: Тренировочный вариант № 150.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Дано уравнение
а) Решите уравнение.
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Основанием пирамиды SABCD является трапеция ABCD, у которой AD||BC. На ребре SC выбрана точка K так, что CK : KS = 2 : 5. Плоскость, проходящая через точки А, В и K, пересекает ребро SD в точке L. Известно, что объемы пирамид SABKL и SABCD относятся, как 95 : 189.
а) Постройте сечение пирамиды плоскостью ABK.
б) Найдите отношение длин оснований трапеции ABCD.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Цех получил заказ на изготовление 2000 деталей типа А и 14000 деталей типа Б. Каждый из 146 рабочих цеха затрачивает на изготовление одной детали типа А время, за которое он мог бы изготовить 2 детали типа Б. Каким образом следует разделить рабочих цеха на две бригады, чтобы выполнить заказ за наименьшее время, при условии, что обе бригады приступят к работе одновременно, и каждая из бригад будет занята изготовлением деталей только одного типа?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при которых система
имеет ровно один или два корня.
На следующей странице вам будет предложено проверить их самостоятельно.
а) На доске записаны числа 1, 21, 22, 23, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность — неотрицательное число. Может ли на доске в результате нескольких таких операций остаться только число 15?
б) Круглая мишень разбита на 20 секторов, которые нумеруются по кругу в каком‐либо порядке числами 1, 2, ..., 20. Если секторы занумерованы, например, в следующем порядке 1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6, 13, 4, 18, то наименьшая из разностей между номерами соседних (по кругу) секторов равна 12 – 9 = 3. Может ли указанная величина при нумерации в другом порядке быть больше 3?
в) Каково наибольшее возможное значение этой величины?
На следующей странице вам будет предложено проверить их самостоятельно.