На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит 40. Вместо некоторых из чисел (возможно, одного) на доске написали числа, меньшие первоначальных на единицу. Числа, которые после этого оказались равными 0, с доски стёрли.
а) Могло ли оказаться так, что среднее арифметическое чисел на доске увеличилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 27. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 34?
в) Среднее арифметическое первоначально написанных чисел равнялось 27. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.
Сначала Маша написала на доске 15 натуральных чисел (необязательно различных), каждое из которых не превосходит 30. Затем вместо некоторых из чисел (возможно, одного) она написала на доске числа, меньшие первоначальных на единицу. Числа, которые после этого оказались равными 0, она с доски стёрла.
а) Могло ли оказаться так, что среднее арифметическое чисел на доске увеличилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 25. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 32?
в) Среднее арифметическое первоначально написанных чисел равнялось 25. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.
Сначала Маша написала на доске 20 натуральных чисел (необязательно различных), каждое из которых не превосходит 30. Затем вместо некоторых из чисел (возможно, одного) она написала на доске числа, меньшие первоначальных на единицу. Числа, которые после этого оказались равными 0, она с доски стёрла.
а) Могло ли оказаться так, что среднее арифметическое чисел на доске увеличилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 24. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 30?
в) Среднее арифметическое первоначально написанных чисел равнялось 24. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

На доске было написано 20 натуральных чисел (необязательно различных), каждое из которых не превосходит 50. Вместо некоторых чисел (возможно, одного) на доске написали числа, большие первоначальных на единицу. Числа, которые после этого оказались равными 51, с доски стёрли, но на доске осталось хотя бы одно число.
а) Могло ли оказаться так, что среднее арифметическое чисел уменьшилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 24. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 17?
в) Среднее арифметическое первоначально написанных чисел равнялось 24. Найдите наименьшее возможное значение среднего арифметического чисел, которые остались на доске.

На доске было написано 20 натуральных чисел (необязательно различных), каждое из которых больше 10, но не превосходит 50. Вместо некоторых чисел (возможно, одного) на доске написали числа, большие первоначальных на единицу. Числа, которые после этого оказались равными 51, с доски стёрли, но на доске осталось хотя бы одно число.
а) Могло ли оказаться так, что среднее арифметическое чисел уменьшилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 24. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 17?
в) Среднее арифметическое первоначально написанных чисел равнялось 24. Найдите наименьшее возможное значение среднего арифметического чисел, которые остались на доске.

На доске написано 20 натуральных чисел (необязательно различных), каждое из которых больше 10, но не превосходит 50. Вместо некоторых чисел (возможно одного) на доске написали числа меньшие первоначальных на единицу. Числа, которые после этого оказались равными 10, с доски стёрли, но на доске осталось хотя бы одно число.
а) Могло ли оказаться так, что среднее арифметическое чисел увеличилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 37. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 44?
в) Среднее арифметическое первоначально написанных чисел равнялось 37. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.
