СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



Задания
Версия для печати и копирования в MS Word
Задание 4 № 510117

В торговом центре два одинаковых автомата продают кофе. Обслуживание автоматов происходит по вечерам после закрытия центра. Известно, что вероятность события «К вечеру в первом автомате закончится кофе» равна 0,25. Такая же вероятность события «К вечеру во втором автомате закончится кофе». Вероятность того, что кофе к вечеру закончится в обоих автоматах, равна 0,15. Найдите вероятность того, что к вечеру дня кофе останется в обоих автоматах.

Решение.

Рассмотрим события

А = кофе закончится в первом автомате,

В = кофе закончится во втором автомате.

Тогда

A·B = кофе закончится в обоих автоматах,

A + B = кофе закончится хотя бы в одном автомате.

По условию P(A) = P(B) = 0,25; P(A·B) = 0,15.

 

События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:

P(A + B) = P(A) + P(B) − P(A·B) = 0,25 + 0,25 − 0,15 = 0,35.

Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,35 = 0,65.

 

Ответ: 0,65.

 

Приведем другое решение.

Вероятность того, что кофе останется в первом автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется во втором автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,15 = 0,85. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,85 = 0,75 + 0,75 − х, откуда искомая вероятость х = 0,65.

 

Примечание.

Заметим, что события А и В не являются независимыми. Действительно, вероятность произведения независимых событий была бы равна произведению вероятностей этих событий: P(A·B) = 0,25·0,25 = 0,0625, однако, по условию, эта вероятность равна 0,15.

Раздел кодификатора ФИПИ/Решу ЕГЭ: 6.3.1 Вероятности событий, 6.3.2 Использования вероятностей и статистики при решении прикладных задач
Спрятать решение · Прототип задания · ·
Елена Александровна Попова 10.10.2018 09:57

Я, доцент, кандидат педагогических наук, считаю ПОЛНОЙ ГЛУПОСТЬЮ И НЕЛЕПОСТЬЮ ВКЛЮЧАТЬ ЗАДАНИЯ НА ЗАВИСИМЫЕ СОБЫТИЯ ДЛЯ ШКОЛЬНИКОВ. Этот раздел НЕ ЗНАЮТ учителя - меня приглашали читать лекции по ТВ на курсы повышения квалификации учителей. Этого раздела нет и не может быть в программе. Выдумывать методы без обоснования НЕ НУЖНО. ЗАДАЧИ подобного рода просто исключить. Ограничиться КЛАССИЧЕСКИМ ОПРЕДЕЛЕНИЕМ ВЕРОЯТНОСТЕЙ. Да и то предварительно изучить школьные учебники - посмотреть, а что там написали по этому поводу авторы. Посмотрите Зубареву 5 класс. Она даже обозначений не знает и вероятность дает в процентах. После обучения по таким учебникам ученики так и считают, что вероятность - это процент. Много интересных задач на классическое определение вероятностей. Их и нужно спрашивать школьников. Возмущения нет предела у преподавателей ВУЗов от ВАШИХ глупостей по введению подобного рода задач.

Александр Фомин

Да, конечно.