Задания
Версия для печати и копирования в MS Word
Тип 13 № 511407
i

а)  Ре­ши­те урав­не­ние  тан­генс в квад­ра­те x минус 3 тан­генс x плюс 2=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ;2 Пи пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Пусть t= тан­генс x, тогда урав­не­ние за­пи­шет­ся в виде:

 t в квад­ра­те минус 3t плюс 2=0 рав­но­силь­но левая круг­лая скоб­ка t минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка t минус 2 пра­вая круг­лая скоб­ка =0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний t=1,t=2. конец со­во­куп­но­сти .

Далее имеем:

 со­во­куп­ность вы­ра­же­ний тан­генс x=1, тан­генс x=2. конец со­во­куп­но­сти рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k,x= арк­тан­генс 2 плюс Пи k, k при­над­ле­жит Z . конец со­во­куп­но­сти

б)  С по­мо­щью чис­ло­вой окруж­но­сти отберём корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ;2 Пи пра­вая квад­рат­ная скоб­ка . По­лу­чим числа  арк­тан­генс 2 плюс Пи и  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи k, арк­тан­генс 2 плюс Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  арк­тан­генс 2 плюс Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2

Аналоги к заданию № 505428: 511407 Все

Классификатор алгебры: Три­го­но­мет­ри­че­ские урав­не­ния, Три­го­но­мет­ри­че­ские урав­не­ния, сво­ди­мые к целым на тан­генс или ко­тан­генс
Методы алгебры: Вве­де­ние за­ме­ны