СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 14 № 514045

Дан прямой круговой конус с вершиной M. Осевое сечение конуса — треугольник с углом 120° при вершине M. Образующая конуса равна Через точку M проведено сечение конуса, перпендикулярное одной из образующих.

а) Докажите, что полученный в сечении треугольник тупоугольный.

б) Найдите площадь сечения.

Решение.

а) Пусть треугольник МАВ — искомое сечение, перпендикулярное образующей МК, и пусть Т — точка его пересечения с диаметром, проходящим через точку К. В треугольнике МТК угол К равен 30°. Следовательно,

В треугольнике МТВ образующая конуса ,

Следовательно,

б) Площадь треугольника MBA равна

 

Ответ: б)


Аналоги к заданию № 514026: 514045 517181 517219 524051 524073 Все