СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



Задания
Версия для печати и копирования в MS Word
Задание 16 № 514098

К двум не­пе­ре­се­ка­ю­щим­ся окруж­но­стям рав­ных ра­ди­у­сов про­ве­де­ны две па­рал­лель­ные общие ка­са­тель­ные. Окруж­но­сти ка­са­ют­ся одной из этих пря­мых в точ­ках A и B Через точку C, ле­жа­щую на от­рез­ке AB, про­ве­де­ны ка­са­тель­ные к этим окруж­но­стям, пе­ре­се­ка­ю­щие вто­рую пря­мую в точ­ках D и E, причём от­рез­ки CA и CD ка­са­ют­ся одной окруж­но­сти, а от­рез­ки CB и CE — дру­гой.

а) До­ка­жи­те, что пе­ри­метр тре­уголь­ни­ка CDE вдвое боль­ше рас­сто­я­ния между цен­тра­ми окруж­но­стей.

б) Най­ди­те DE, если ра­ди­у­сы окруж­но­стей равны 5, рас­сто­я­ние между их цен­тра­ми равно 18, а AC = 8.

Решение.

а) Пусть O1 — центр окружности, которая касается отрезка CD, O2 — центр окружности, которая касается отрезка CE, R — радиус окружностей. Окружность с центром O1 касается отрезка CD в точке K, а прямой DE в точке M; окружность с центром O2 касается отрезка CE в точке L, а прямой DE в точке N (рис. 1).

Получаем, что AO1O2B и MO1O2N — прямоугольники, следовательно, AB = O1O2 и MN = O1O2.

По свойству касательных CA = CK, DM = DK, CB = CL, EL = EN.

Тогда периметр треугольника CDE

 

б) Точка O1 лежит на биссектрисах углов MDC и ACD (рис. 2), следовательно,

В прямоугольном треугольнике CO1D имеем:

Аналогично, Получаем, что

 

Ответ: 12,375.

Источник: За­да­ния 16 (С4) ЕГЭ 2014