≡ математика
сайты - меню - вход - новости




Вариант № 10454334

За­да­ния 16 (С4) ЕГЭ 2014

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 16 № 514097

Одна окружность вписана в прямоугольную трапецию, а вторая касается большей боковой стороны и продолжений оснований.

а) Докажите, что расстояние между центрами окружностей равно большей боковой стороне трапеции.

б) Найдите расстояние от вершины одного из прямых углов трапеции до центра второй окружности, если точка касания первой окружности с большей боковой стороной трапеции делит её на отрезки, равные 2 и 50.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задание 16 № 514098

К двум непересекающимся окружностям равных радиусов проведены две параллельные общие касательные. Окружности касаются одной из этих прямых в точках A и B Через точку C, лежащую на отрезке AB, проведены касательные к этим окружностям, пересекающие вторую прямую в точках D и E, причём отрезки CA и CD касаются одной окружности, а отрезки CB и CE — другой.

а) Докажите, что периметр треугольника CDE вдвое больше расстояния между центрами окружностей.

б) Найдите DE, если радиусы окружностей равны 5, расстояние между их центрами равно 18, а AC = 8.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задание 16 № 514124

Диагональ AC разбивает трапецию ABCD с основанием AD и BC, из которых AD большее, на два подобных треугольника.

а) Докажите, что ∠ABC = ∠ACD.

б) Найдите отрезок, соединяющий середины оснований трапеции, если известно, что BC = 18, AD = 50 и


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задание 16 № 505105

Около остроугольного треугольника ABC описана окружность с центром O. На продолжении отрезка AO за точку O отмечена точка K так, что BAC + AKC=90°.

а) Докажите, что четырёхугольник OBKC вписанный.

б) Найдите радиус окружности, описанной около четырёхугольника OBKC, если , а


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задание 16 № 509123

Точка О — центр окружности, описанной около остроугольного треугольника ABC. На продолжении отрезка AO за точку О отмечена точка K так, что

а) Докажите, что четырехугольник OBKC вписанный.

б) Найдите радиус окружности, описанной около треугольника KBC, если известно, что радиус окружности, описанной около треугольника АBC равен 12, а


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задание 14 № 510805

В равнобедренном треугольнике с углом при вершине проведена биссектриса В треугольник вписан прямоугольник так, что сторона лежит на отрезке а вершина  —  на отрезке

а) Докажите, что

б) Найдите площадь прямоугольника если


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задание 14 № 510811

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E —  на отрезке AB.

а) Докажите, что FH = 2DH.

б) Найдите площадь прямоугольника DEFH, если AB = 2.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

8
Задание 14 № 510832

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H.

а) Докажите, что ∠AHB1 = ∠ACB.

б) Найдите BC, если AH = 21 и ∠BAC = 30°.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

9
Задание 14 № 510851

В остроугольном треугольнике ABC провели высоту BH из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.

а) Докажите, что треугольник MBK подобен треугольнику ABC.

б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 2, а радиус окружности, описанной около треугольника ABC равен 4.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

10
Задание 14 № 510857

В остроугольном треугольнике ABC провели высоту BH из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.

а) Докажите, что треугольник MBK подобен треугольнику ABC.

б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 1, а радиус окружности, описанной около треугольника ABC равен 4.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

11
Задание 14 № 510863

Высоты и остроугольного треугольника пересекаются в точке

а) Докажите, что

б) Найдите если и


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

12
Задание 14 № 510869

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке H.

а) Докажите, что ∠AHB1 = ∠ACB.

б) Найдите , если AH = 4 и ∠BAC = 60°.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

13
Задание 14 № 510875

Около равнобедренного треугольника ABC с основанием BC описана окружность. Через точку C провели прямую, параллельную стороне AB. Касательная к окружности, проведённая в точке B, пересекает эту прямую в точке K.

а) Докажите, что треугольник BCK — равнобедренный.

б) Найдите отношение площади треугольника ABC к площади треугольника BCK, если


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 16 № 510881

В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.

а) докажите, что биссектриса угла С делит отрезок МN пополам

б) пусть Р — точка пересечения биссектрис треугольника АВС. Найдите отношение АР : РN.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.