ЕГЭ по математике 05.06.2014. Основная волна. Восток. Вариант 2.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольной пирамиде MABC, в основаниии которой лежит правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 6, а ребро MA равно 11. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка F. Известно, что AD = 4 и BE = 2, F — середина AM. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и F.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите систему неравенств
На следующей странице вам будет предложено проверить их самостоятельно.
В остроугольном треугольнике ABC провели высоту BH из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.
а) Докажите, что треугольник MBK подобен треугольнику ABC.
б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 1, а радиус окружности, описанной около треугольника ABC равен 4.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при которых уравнение
имеет ровно два решения.
На следующей странице вам будет предложено проверить их самостоятельно.
На сайте проводится опрос, кого из футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста — доля голосов, отданных за него, в процентах, округленная до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.
а) Всего проголосовало 13 посетителей сайта. Голоса распределились так, что рейтинг некоторого футболиста стал равным 31. Затем Вася проголосовал за этого футболиста. Каков теперь рейтинг футболиста с учётом голоса Васи?
б) Голоса распределяют между двумя футболистами. Может ли суммарный рейтинг быть больше 100?
в) На сайте отображалось, что рейтинг некоторого футболиста равен 7. После того, как Вася отдал свой голос за этого футболиста рейтинг стал равен 9. При каком наибольшем числе отданных за всех футболистов голосов, включая Васин голос, такое возможно?
На следующей странице вам будет предложено проверить их самостоятельно.