≡ математика
сайты - меню - вход - новости




Вариант № 10453010

За­да­ния 14 (С2) ЕГЭ 2014

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задания Д6 C2 № 514090

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и ∠A = 120° расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания. Найдите угол между плоскостью ABC и плоскостью основания цилиндра.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д6 C2 № 514091

В правильной треугольной пирамиде MABC с вершиной M сторона основания AB равна 6. На ребре AB отмечена точка K так, что AK : KB = 5 : 1. Сечение MKC является равнобедренным треугольником с основанием MK. Найдите угол между боковыми гранями пирамиды.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д6 C2 № 510793

Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1:3. Найдите площадь сечения конуса плоскостью ABP.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д6 C2 № 510799

Радиус основания конуса с вершиной равен а длина его образующей равна На окружности основания конуса выбраны точки и делящие окружность на две дуги, длины которых относятся как Найдите площадь сечения конуса плоскостью


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д6 C2 № 510803

Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен Найдите угол между боковыми гранями этой пирамиды.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задания Д6 C2 № 510809

Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен Найдите угол между боковыми гранями этой пирамиды.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задания Д6 C2 № 510830

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 8, а боковые рёбра 16. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что CD = BE = LM = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

8
Задания Д6 C2 № 510849

В треугольной пирамиде основанием является правильный треугольник ребро перпендикулярно плоскости основания, стороны основания равны а ребро На ребре находится точка на ребре точка а на ребре — точка Известно, что и Найдите площадь сечения пирамиды плоскостью, проходящей через точки и


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

9
Задания Д6 C2 № 510855

В треугольной пирамиде MABC, в основаниии которой лежит правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 6, а ребро MA равно 11. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка F. Известно, что AD = 4 и BE = 2, F — середина AM. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и F.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

10
Задания Д6 C2 № 510861

В правильной треугольной пирамиде с основанием стороны основания равны а боковые рёбра На ребре находится точка на ребре находится точка а на ребре — точка Известно, что Найдите площадь сечения пирамиды плоскостью, проходящей через точки и


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

11
Задания Д6 C2 № 510867

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые рёбра 8. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что СD = BE = LM = 2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

12
Задания Д6 C2 № 510873

В правильной треугольной пирамиде MABC с вершиной M сторона основания AB равна 6. На ребре AB отмечена точка K. Сечение MKC является равнобедренным треугольником с основанием MC. Найдите угол между плоскостями MLC и MBC, где L — середина AB.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

13
Задания Д6 C2 № 510879

В треугольной пирамиде MABC с основанием ABC ребро MA перпендикулярно плоскости основания, стороны основания равны 3, а ребро MB равно 5. На ребре AC находится точка D, на ребре AB точка E, а на ребре AM — точка L. Известно, что AD = 2 и BE = ML = 1. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.