Вариант № 5358177

ЕГЭ по математике 19.06.2014. Основная волна, резервный день. Запад.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 510878
i

а)  Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 1, зна­ме­на­тель: синус в квад­ра­те x конец дроби минус дробь: чис­ли­тель: 3, зна­ме­на­тель: синус x конец дроби плюс 2=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби , минус Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В тре­уголь­ной пи­ра­ми­де MABC с ос­но­ва­ни­ем ABC ребро MA пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния, сто­ро­ны ос­но­ва­ния равны 3, а ребро MB равно 5. На ребре AC на­хо­дит­ся точка D, на ребре AB точка E, а на ребре AM  — точка L. Из­вест­но, что AD  =  2 и BE  =  ML  =  1.

а)  До­ка­жи­те, что LDE  — рав­но­бед­рен­ный тре­уголь­ник.

б)  Най­ди­те пло­щадь се­че­ния пи­ра­ми­ды плос­ко­стью, про­хо­дя­щей через точки E, D и L.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип Д11 C3 № 510880
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний  новая стро­ка 19 умно­жить на 4 в сте­пе­ни x плюс 4 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка мень­ше или равно 20, новая стро­ка x умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 7 минус 2x пра­вая круг­лая скоб­ка боль­ше или равно 0. конец си­сте­мы


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 17 № 510881
i

В тре­уголь­ни­ке АВС про­ве­де­на бис­сек­три­са АМ. Пря­мая, про­хо­дя­щая через вер­ши­ну В пер­пен­ди­ку­ляр­но АМ, пе­ре­се­ка­ет сто­ро­ну АС в точке N. АВ = 6; ВС = 5; АС = 9.

а)  до­ка­жи­те, что бис­сек­три­са угла С делит от­ре­зок МN по­по­лам

б)  пусть Р  — точка пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС. Най­ди­те от­но­ше­ние АР : РN.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 18 № 510882
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус a конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус левая круг­лая скоб­ка a плюс 9 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус a конец дроби пра­вая круг­лая скоб­ка плюс 2a левая круг­лая скоб­ка 9 минус a пра­вая круг­лая скоб­ка =0.

имеет ровно 4 ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 19 № 510883
i

а)  Можно ли число 2014 пред­ста­вить в виде суммы двух раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр?

б)  Можно ли число 199 пред­ста­вить в виде суммы двух раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр?

в)  Най­ди­те наи­мень­шее на­ту­раль­ное число, ко­то­рое можно пред­ста­вить в виде суммы пяти раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.