СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 14 № 517200

В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB =  4 и диагональю BD =  7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

Решение.

а) Имеем Пусть прямая CE пересекает ребро AB в точке M. Треугольники BME и DCE подобны, поэтому откуда Тогда Треугольники ABS и AMF подобны, значит, Поэтому прямая SB параллельна плоскости CEF.

б) Из доказанного в предыдущем пункте следует, что Тогда Пусть O — центр основания ABCD. Так как все боковые ребра пирамиды равны, SO — высота пирамиды. Имеем:

Плоскость SDB перпендикулярна плоскости основания, и проекция H точки Q на плоскость основания лежит на отрезке DO. Из подобия треугольников DQH и DSO находим

 

Ответ:


Аналоги к заданию № 517200: 517238 525727 525746 Все

Классификатор стереометрии: Расстояние от точки до плоскости, Сечение, параллельное или перпендикулярное прямой, Сечение, проходящее через три точки, Четырехугольная пирамида