В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 4 и диагональю BD = 7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3 .
а) Докажите, что плоскость CEF параллельна ребру SB.
б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.
а) Имеем DE = 7 − BE = 4. Пусть прямая CE пересекает ребро AB в точке M. Треугольники BME и DCE подобны, поэтому откуда BM = 3. Тогда AM = 1. Треугольники ABS и AMF подобны, значит, отрезок FM параллелен отрезку SB. Поэтому прямая SB параллельна плоскости CEF.
б) Из доказанного в предыдущем пункте следует, что отрезок QE параллелен отрезку SB. Тогда Пусть O — центр основания ABCD. Так как все боковые рёбра пирамиды равны, SO — высота пирамиды. Имеем
Плоскость SDB перпендикулярна плоскости основания, и проекция H точки Q на плоскость основания лежит на отрезке DO. Из подобия треугольников DQH и DSO находим
Ответ: б)

