Дана правильная четырёхугольная пирамида MABCD, все рёбра которой равны 6. Точка N — середина бокового ребра MA, точка K делит боковое ребро MB в отношении 5:1, считая от вершины M.
а) Докажите, что сечение пирамиды плоскостью, проходящей через точки N и K параллельно прямой AD, является равнобедренной трапецией.
б) Найдите площадь этого сечения.
а) Через точки N и K проведём прямые, параллельные ребру AD. Эти прямые пересекают рёбра MD и MC в точках P и L соответственно. Четырёхугольник KLPN — сечение пирамиды указанной плоскостью. Стороны NP и KL параллельны и не равны. Следовательно, KLPN — трапеция. В треугольниках NMK и PML углы при вершине M равны, ML = MK, MN = MP. Следовательно, треугольники равны, и поэтому NK = PL. Таким образом, трапеция KLPN равнобедренная.
б) Пусть NH — высота трапеции KLPN. Имеем
Найдём NK из треугольника NMK. Имеем NM = NP = 3, MK = KL = 5. По теореме косинусов,
Поскольку трапеция равнобедренная,
По теореме Пифагора из треугольника KHN получаем:
Следовательно, площадь трапеции равна
Ответ: б)

