Задания
Версия для печати и копирования в MS Word

а)  Ре­ши­те урав­не­ние  дробь: чис­ли­тель: 2 синус в квад­ра­те x минус синус x минус 1, зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка конец дроби =0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

Спрятать решение

Ре­ше­ние.

а)  Ар­гу­мент ло­га­риф­ма дол­жен быть по­ло­жи­тель­ным, зна­ме­на­тель дроби дол­жен быть от­ли­чен от нуля. Сле­до­ва­тель­но, об­ласть опре­де­ле­ния урав­не­ния за­да­ет­ся усло­ви­я­ми  ко­си­нус x боль­ше 0,  ко­си­нус x не равно 1. При таких усло­ви­ях чис­ли­тель дол­жен быть равен нулю:

2 синус в квад­ра­те x минус синус x минус 1=0 рав­но­силь­но со­во­куп­ность вы­ра­же­ний синус x=1, синус x= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k,x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k,x= минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k, конец со­во­куп­но­сти . k при­над­ле­жит Z .

Усло­ви­ям удо­вле­тво­ря­ет толь­ко x= минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k, k при­над­ле­жит Z .

б)  Отберём корни при по­мо­щи еди­нич­ной окруж­но­сти. Под­хо­дит  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 6 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс 2 Пи k:k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 6 конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 388
Классификатор алгебры: Урав­не­ния сме­шан­но­го типа
Методы алгебры: До­мно­же­ние на зна­ме­на­тель с учётом ОДЗ
Кодификатор ФИПИ/Решу ЕГЭ: