Задания
Версия для печати и копирования в MS Word
Тип 15 № 648421
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка 2 x минус 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка конец дроби боль­ше 1.

Спрятать решение

Ре­ше­ние.

Вы­ра­же­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка по­ло­жи­тель­но при всех до­пу­сти­мых зна­че­ни­ях x, так как не­от­ри­ца­тель­ные сла­га­е­мые не равны нулю од­но­вре­мен­но. Сле­до­ва­тель­но, обе части не­ра­вен­ства можно умно­жить на это вы­ра­же­ние, не меняя знака не­ра­вен­ства. По­лу­ча­ем:

 дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка 2 x минус 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка конец дроби боль­ше 1 рав­но­силь­но ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка 2 x минус 5 пра­вая круг­лая скоб­ка боль­ше ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка рав­но­силь­но
 рав­но­силь­но ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка 2 x минус 5 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 5 в квад­ра­те левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка боль­ше 0 рав­но­силь­но левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 2 x минус 5 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 2 x минус 5 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка боль­ше 0 рав­но­силь­но
 рав­но­силь­но си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка 2x минус 5 минус x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 2x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка боль­ше 0, 2x минус 5 боль­ше 0, x минус 2 боль­ше 0 конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 2x минус 3 пра­вая круг­лая скоб­ка боль­ше 0 , x боль­ше дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби конец си­сте­мы . рав­но­силь­но со­во­куп­ность вы­ра­же­ний дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби мень­ше x мень­ше 3 , x боль­ше 3. конец со­во­куп­но­сти .

 

Ответ:  левая круг­лая скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­чен вер­ный ответ2
Обос­но­ван­но по­лу­чен ответ, от­ли­ча­ю­щий­ся от вер­но­го ис­клю­че­ни­ем точек,

ИЛИ

по­лу­чен не­вер­ный ответ из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источник: А. Ларин. Тре­ни­ро­воч­ный ва­ри­ант № 443
Классификатор алгебры: Не­ра­вен­ства пер­вой и вто­рой сте­пе­ни от­но­си­тель­но ло­га­риф­ми­че­ской функ­ции
Методы алгебры: Метод ин­тер­ва­лов