Задания 14 (С2) ЕГЭ 2018
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
| Время | |
| Прошло | 0:00:00 |
| Осталось | 3:55:00 |
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC  — диаметр основания. Известно, что
а) Докажите, что угол между прямыми и BC равен
б) Найдите объём цилиндра.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки а на окружности другого основания —
— образующая цилиндра, а AC  — диаметр основания. Известно, что
а) Докажите,что угол между прямыми и BC равен
б) Найдите объём цилиндра.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.
а) Докажите, что угол АВС1 прямой.
б) Найдите угол между прямыми ВВ1 и АС1, если АВ = 6, ВВ1 = 15, В1С1 = 8.
На следующей странице вам будет предложено проверить их самостоятельно.
В кубе ABCDA1B1C1D1 все ребра равны 6.
а) Докажите, что угол между прямыми AC и BC1 равен 60°.
б) Найдите расстояние между прямыми AC и BC1.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.
а) Докажите, что угол АВС1 прямой.
б) Найдите угол между прямыми ВВ1 и АС1, если АВ = 8, ВВ1 = 6, В1С1 = 15.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре на окружности одного из оснований цилиндра выбраны точки A и B, а на окружности другого основания — точки B1 и C1, причём BB1 — образующая цилиндра, а AC1 пересекает его ось цилиндра.
а) Докажите, что угол C1BA = 90°.
б) Найдите площадь боковой поверхности, если AB = 16, BB1 = 5, B1C1 = 12.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.
а) Докажите, что угол АВС1 прямой.
б) Найдите расстояние от точки B до прямой AC1, если AB = 21, BB1 = 12, B1C1 = 16.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.
а) Докажите, что угол АВС1 прямой.
б) Найдите расстояние от точки B до прямой AC1, если AB = 15, BB1 = 16, B1C1 = 12.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.
а) Докажите, что угол АВС1 прямой.
б) Найдите площадь боковой поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.
а) Докажите, что угол АВС1 прямой.
б) Найдите площадь боковой поверхности цилиндра, если AB = 15, BB1 = 21, B1C1 = 20.
На следующей странице вам будет предложено проверить их самостоятельно.
На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ : QB = 1 : 2. Точка P — середина ребра AS.
а) Докажите, что плоскость DPQ перпендикулярна плоскости основания пирамиды.
б) Найдите площадь сечения DPQ, если площадь сечения DSB равна 6.
На следующей странице вам будет предложено проверить их самостоятельно.
На ребре AB правильной четырёхугольной пирамиды SABCD с основанием ABCD отмечена точка Q, причём AQ : QB = 1 : 2. Точка P — середина ребра AS.
а) Докажите, что плоскость DPQ перпендикулярна плоскости основания пирамиды.
б) Найдите площадь сечения DPQ, если площадь сечения DSB равна
На следующей странице вам будет предложено проверить их самостоятельно.
В правильном тетраэдре АВСD точка Н — центр грани АВС, а точка М — середина ребра СD.
а) Докажите, что прямые АВ и СD перпендикулярны.
б) Найдите угол между прямыми DН и ВМ.
На следующей странице вам будет предложено проверить их самостоятельно.
В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка C1, причём CC1 — образующая цилиндра, а AC — диаметр основания. Известно, что
а) Докажите, что угол между прямыми BC и AC1 равен
б) Найдите расстояние от точки B до AC1.
На следующей странице вам будет предложено проверить их самостоятельно.