≡ математика
сайты - меню - вход - новости




Вариант № 8615106

А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 114.

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задания Д5 C1 № 511861

Дано уравнение

А) Решите уравнение.

Б) Найдите его корни, принадлежащие промежутку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д7 C2 № 511862

В правильной треугольной призме ABCA1B1C1 сторона основания равна 6, а боковое ребро равно 5. На ребре CC1 взята точка K так, что CK : KC1 = 1 : 4, а на ребре A1C1 взята точка M так, что A1M : MC1 = 1 : 2.

А) Определите, в каком отношении плоскость BKM делит ребро A1B1 призмы.

Б) Найдите площадь сечения призмы плоскостью BKM.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д8 C3 № 511863

Решите систему неравенств


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д12 C4 № 511864

В четырехугольник ABCD биссектриса угла С пересекает сторону AD в точке M, а биссектриса угла А пересекает сторону BC в точке K. Известно, что AKCM — параллелограмм.

а) Докажите, что ABCD — параллелограмм.

б) Найдите площадь четырехугольника ABCD, если BK = 3, AM = 2, а угол между диагоналями AC и BD равен 60°.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д13 C5 № 511865

1 апреля 2015 года близнецы Саша и Паша планируют взять в кредит одинаковые суммы денег на покупку автомобилей. Саша хочет оформить кредит в банке «Вампириал» под 20% годовых, а Паша — в банке «Хитер-Инвест» под 10% годовых. Схема выплаты кредита у каждого банка следующая: 1 апреля каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 20% и 10% соответственно), затем клиент переводит в банк определенную сумму ежегодного платежа. Кто из братьев должен будет в итоге заплатить своему банку больше денег, если известно, что Саша планирует выплатить долг двумя равными платежами, а Паша — пятью равными платежами.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задания Д14 C6 № 511866

Найдите все значения а, при каждом из которых уравнение  имеет ровно три корня.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задания Д16 C7 № 511867

Дано выражение: 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 = 0

А) Замените каждую * знаком «+» или «−» так, чтобы равенство стало верным.

Б)  Какое  наименьшее  число  минусов  придется  поставить,  чтобы  равенство  стало 

верным?

В)  Какое  наименьшее  число  плюсов  придется  поставить,  чтобы  равенство  стало 

верным?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.