А. Ларин: Тренировочный вариант № 143.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Дано уравнение
а) Решите уравнение.
б) Найдите его корни, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В кубе АВСDA1B1C1D1 точка N — середина ребра BC, точка M лежит на ребре AB так, что MB = 2MA. Плоскость, проходящая через точки M и N параллельно прямой ВD1, пересекает ребро DD1 в точке K.
а) Докажите, что DK : D1K = 5 : 2.
б) Найдите расстояние от точки D1 до прямой MN, если известно, что ребро куба равно 12.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В треугольнике ABC на стороне AB отмечена точка E, при этом BE = 4, EA = 5, BC = 6.
а) Докажите, что углы ВАС и BCE равны.
б) Найдите площадь треугольника AEC, если известно, что угол ABC равен 30°.
На следующей странице вам будет предложено проверить их самостоятельно.
Имеется три сплава. Первый содержит 30% меди и 70% олова, второй — 45% олова, 20% серебра и 35% меди, третий — 60% олова и 40% серебра. Из них необходимо составить новый сплав, содержащий 25% серебра. Какое наименьшее и наибольшее процентное содержание олова может быть в этом новом сплаве?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра а, при каждом из которых уравнение
имеет ровно три различных действительных корня.
На следующей странице вам будет предложено проверить их самостоятельно.
Натуральные числа от 1 до 9 распределены на три группы: в 1‐й группе два числа, во 2‐й — три и в 3‐й — четыре.
а) Могут ли произведения чисел в каждой группе оказаться одинаковыми?
б) Могут ли суммы в каждой группе оказаться одинаковыми?
в) Из чисел 1‐й группы составлено двузначное число А, из чисел 2‐й группы составлено трехзначное число В, а из чисел 3‐й группы составлено четырехзначное число С. Какое наибольшее значение может принимать сумма A + В + С?
На следующей странице вам будет предложено проверить их самостоятельно.