СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости




Вариант № 9980157

А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 148.

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задания Д5 C1 № 513770

Дано уравнение

а) Решите уравнение.

б) Укажите корни этого уравнения, принадлежащие отрезку


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д7 C2 № 513771

Все ребра правильной четырехугольной пирамиды FABCD с основанием ABCD равны 7. Точки P, Q, R лежат на ребрах FA, AB и BC соответственно, причем FP = BR = 4, AQ = 3.

а) Докажите, что плоскость PQR перпендикулярна ребру FD.

б) Найдите расстояние от вершины D до плоскости PQR.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д9 C3 № 513772

Решите неравенство


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д12 C4 № 513773

В окружность радиуса R вписан четырехугольник ABCDP — точка пересечения его диагоналей, AB = CD = 5, AD > BC. Высота, опущенная из точки В на сторону AD, равна 3, а площадь треугольника ADP равна 

а) Докажите, что ABCD — равнобедренная трапеция 

б) Найдите стороны ADBC и радиус окружности R.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д13 C5 № 513774

Строительной организации необходимо построить некоторое количество одинаковых домов общей площадью 2500 м2. Стоимость одного дома площадью a м2 складывается из стоимости материалов тыс.руб, стоимости строительных работ тыс.руб и стоимости отделочных работ тыс.руб. Числа p1, p2, p3 являются последовательными членами геометрической прогрессии, их сумма равна 21, а их произведение равно 64. Если построить 63 дома, то затраты на материалы будут меньше, чем затраты на строительные и отделочные работы. Сколько следует построить домов, чтобы общие затраты были минимальными? 


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задания Д14 C6 № 513775

Найдите все значения a, при каждом из которых система уравнений

имеет хотя бы одно решение. 


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Задания Д16 C7 № 513776

а) На доске записаны числа: 4, 14, 24, ..., 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть еще два, потом — еще три, и, наконец, стереть еще четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?

б) В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.