

Решите неравенство:
Так как и
для любого x, воспользовавшись тождеством
заключаем, что слагаемые в левой части неравенства равны. Тогда получаем:
Заметим, что при неравенство верно. При
основание степени больше 1, поэтому показатель степени должен быть неположительным:
Объединяя рассмотренные случаи, получаем:
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |


Решите неравенство:
Так как и
для любого x, воспользовавшись тождеством
и методом интервалов, получаем:
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен верный ответ | 2 |
| Обоснованно получен ответ, отличающийся от верного исключением точек, ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
| Максимальный балл | 2 |
Наверх