Тип 17 № 509823 

Планиметрическая задача. Окружности и треугольники, разные задачи
i
Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K.
а) Докажите, что отрезок BK втрое больше отрезка CK.
б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите AB, если BK = 18 и BN = 17.
Решение. 
а) Проведём медиану AE к основанию BC, поскольку треугольник ABC равнобедренный, медиана AE является биссектрисой и высотой. Проведём MK, заметим, что ∠BKM = 90°, поскольку он вписанный и опирается на диаметр окружности. Поэтому MK — перпендикуляр к ВС. Тогда MK — средняя линия AEС, и тогда КС = EК. Поскольку CE = 2CK, имеем: BK = 3CK, что и требовалось доказать.
б) Заметим, что ∠BKM = ∠BNM = 90°, поскольку эти углы вписанные и опираются на диаметр. Тогда
(*),
причем


Подставляя полученные соотношения в (*), получаем:



Тогда 
Ответ: б) 18.
Приведём другое решение пункта б).
Пусть
Тогда
и пусть
тогда
По свойству секущих имеем:


Приведём третье решение пункта б).
Пусть угол при вершине A треугольника ABC равен 2α, AB = x. Тогда из прямоугольного треугольника ANM находим:
Из треугольника MKC:
Таким образом, получаем уравнение:

Из последнего уравнения получаем те же ответы, что и в предыдущем решении x = 16 (постороннее решение) или x = 18.
Приведём еще одно решение пункта б).
Рассмотрим прямоугольный треугольник
Если AB = x, то
С другой стороны из треугольника ABC по теореме косинусов имеем
Составим уравнение:

Последнее уравнение уже дважды решено выше.
Критерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
| Получен обоснованный ответ в пункте б) ИЛИ имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
| Имеется верное доказательство утверждения пункта а) ИЛИ при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен | 1 |
| Решение не соответствует ни одному из критериев, приведённых выше | 0 |
| Максимальный балл | 3 |
Ответ: б) 18.