Участники одной школы писали тест. Результатом каждого ученика является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 73 баллов. Из-за того, что задания оказались слишком трудными, было принято решение всем участникам теста добавить по 5 баллов, благодаря чему количество сдавших тест увеличилось.
а) Могло ли оказаться так, что после этого средний балл участников, не сдавших тест, понизился?
б) Могло ли оказаться так, что после этого средний балл участников, сдавших тест, понизился, и средний балл участников, не сдавших тест, тоже понизился?
в) Известно, что первоначально средний балл участников теста составил 80, средний балл участников, сдавших тест, составил 90, а средний балл участников, не сдавших тест, составил 65. После добавления баллов средний балл участников, сдавших тест, стал равен 93, а не сдавших — 69. При каком наименьшем числе участников теста возможна такая ситуация?
Ученики одной школы писали тест. Результатом каждого участника является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 83 баллов. Из-за того, что задания оказались слишком трудными, было принято решение всем участникам теста добавить по 5 баллов, благодаря чему количество сдавших тест увеличилось.
а) Могло ли оказаться так, что после этого средний балл учеников, не сдавших тест, понизился?
б) Могло ли оказаться так, что после этого средний балл учеников, сдавших тест, понизился, и средний балл учеников, не сдавших тест, тоже понизился?
в) Известно, что первоначально средний балл участников теста составил 90, средний балл учеников, сдавших тест, составил 100, а средний балл учеников, не сдавших тест, составил 75. После добавления баллов средний балл учеников, сдавших тест, стал равен 103, а не сдавших — 79. При каком наименьшем числе участников теста возможна такая ситуация?
Ученики одной школы писали тест. Результатом каждого ученика является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 63 баллов. Из-за того, что задания оказались слишком трудными, было принято решение всем участникам теста добавить по 4 балла, благодаря чему количество сдавших тест увеличилось.
а) Могло ли оказаться так, что после этого средний балл участников, не сдавших тест, понизился?
б) Могло ли оказаться так, что после этого средний балл участников, сдавших тест, понизился, и средний балл участников, не сдавших тест, тоже понизился?
в) Известно, что первоначально средний балл участников теста составил 70, средний балл участников, сдавших тест, составил 80, а средний балл участников, не сдавших тест, составил 55. После добавления баллов средний балл участников, сдавших тест, стал равен 82, а не сдавших тест — 58. При каком наименьшем числе участников теста возможна такая ситуация?
По результатам теста по математике ученик получает неотрицательное число баллов. Ученик войдет в группу А, если количество баллов не менее 45. Если количество баллов меньше 45, то ученик войдет в группу Б. Чтобы не расстраивать родителей, решили каждому ученику добавить 8 баллов, поэтому количество учеников группы А увеличилось.
а) Мог ли после этого понизиться средний балл учеников группы Б?
б) Мог ли после этого понизиться средний балл учеников группы Б, если при этом средний балл учеников группы А тоже понизился?
в) Пусть первоначально средний балл группы А был 52 балла, группы Б — 34 балла, а средний балл всех учеников составил 46 баллов. После добавления средний балл группы А стал равен 58 баллов, группы Б — 38. При каком наименьшем числе участников возможна такая ситуация?
Ученики писали тест. Результатом каждого ученика является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 83 баллов. Из‐за того, что задания оказались трудными, всем участникам теста добавили по 5 баллов, благодаря чему количество сдавших тест увеличилось.
а) Мог ли средний балл участников, не сдавших тест, понизиться?
б) Мог ли средний балл участников, сдавших тест, понизиться и средний балл участников, не сдавших тест, тоже понизиться?
в) Известно, что первоначально средний балл участников теста составил 90, средний балл участников, сдавших тест, составил 100, а средний балл участников, не сдавших тест, составил 75. После добавления баллов средний балл участников, сдавших тест, стал равен 103, а не сдавших тест — 79. При каком минимальном числе участников теста возможна такая ситуация?
Для получения членства в одном престижном клубе проводится отбор. Каждый из претендентов вносит залог, который является целым неотрицательным числом тысяч. Сумма залога в 150 тысяч гарантирует получение членства. После окончания сроков приема залога с целью увеличения численности клуба руководство приняло решение добавить к сумме залога каждого из претендентов 10 тысяч.
а) Могло ли оказаться так, что после этого понизится средняя сумма залога у тех, кто не достиг достаточной суммы?
б) Могло ли оказаться так, что после этого понизится средняя сумма залога у тех, кто достиг достаточной суммы, и тех, кто не достиг достаточной суммы?
в) Известно, что первоначально средняя сумма залога всех участников составила 130 тысяч рублей, средняя сумма тех, кто сдал достаточную сумму, составила 160 тысяч рублей, а у тех, кто не сдал достаточной суммы, она составила 125 тысяч. После добавления 10 тысяч средняя сумма залога среди тех, кто достиг достаточной
суммы, составила 155 тысяч, а средняя сумма залога у тех, кто не достиг достаточной суммы, составила 120 тысяч. При каком наименьшем числе участников возможна такая ситуация?

