Каталог заданий.
Окружности и системы окружностей

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 17 № 501887
i

Две окруж­но­сти ка­са­ют­ся внеш­ним об­ра­зом в точке K. Пря­мая AB ка­са­ет­ся пер­вой окруж­но­сти в точке A, а вто­рой  — в точке B. Пря­мая BK пе­ре­се­ка­ет первую окруж­ность в точке D, пря­мая AK пе­ре­се­ка­ет вто­рую окруж­ность в точке C.

а)  До­ка­жи­те, что пря­мые AD и BC па­рал­лель­ны.

б)  Най­ди­те пло­щадь тре­уголь­ни­ка AKB, если из­вест­но, что ра­ди­у­сы окруж­но­стей равны 1 и 4.

Источники:
Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2018 по ма­те­ма­ти­ке. Про­филь­ный уро­вень;

2
Тип 17 № 507237
i

Две окруж­но­сти ка­са­ют­ся внут­рен­ним об­ра­зом. Тре­тья окруж­ность ка­са­ет­ся пер­вых двух и их линии цен­тров.

а)  До­ка­жи­те, что пе­ри­метр тре­уголь­ни­ка с вер­ши­на­ми в цен­трах трёх окруж­но­стей равен диа­мет­ру наи­боль­шей из этих окруж­но­стей.

б)  Най­ди­те ра­ди­ус тре­тьей окруж­но­сти, если из­вест­но, что ра­ди­у­сы пер­вых двух равны 4 и 1.


Аналоги к заданию № 507237: 507211 515670 Все


3
Тип 17 № 507889
i

Хорды AD, BE и CF окруж­но­сти делят друг друга на три рав­ные части.

а)  До­ка­жи­те, что эти хорды равны.

б)  Най­ди­те пло­щадь ше­сти­уголь­ни­ка ABCDEF, если точки A, B, C, D, E, F по­сле­до­ва­тель­но рас­по­ло­же­ны на окруж­но­сти, а ра­ди­ус окруж­но­сти равен 2 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та .


Аналоги к заданию № 507889: 507912 511502 Все


4
Тип 17 № 510102
i

Две окруж­но­сти ка­са­ют­ся внут­рен­ним об­ра­зом в точке A, причём мень­шая про­хо­дит через центр боль­шей. Хорда BC боль­шей окруж­но­сти ка­са­ет­ся мень­шей в точке P. Хорды AB и AC пе­ре­се­ка­ют мень­шую окруж­ность в точ­ках K и M со­от­вет­ствен­но.

а)  До­ка­жи­те, что пря­мые KM и BC па­рал­лель­ны.

б)  Пусть L  — точка пе­ре­се­че­ния от­рез­ков KM и AP. Най­ди­те AL, если ра­ди­ус боль­шей окруж­но­сти равен 10, а BC  =  16.


Аналоги к заданию № 510102: 519907 641163 Все


5
Тип 17 № 513103
i

Точка B лежит на от­рез­ке AC. Пря­мая, про­хо­дя­щая через точку A, ка­са­ет­ся окруж­но­сти с диа­мет­ром BC в точке M и вто­рой раз пе­ре­се­ка­ет окруж­ность с диа­мет­ром  AB в точке  K. Про­дол­же­ние от­рез­ка  MB пе­ре­се­ка­ет окруж­ность с диа­мет­ром  AB в точке  D.

а)  До­ка­жи­те, что пря­мые AD и MC па­рал­лель­ны.

б)  Най­ди­те пло­щадь тре­уголь­ни­ка DBC, если AK  =  3 и MK  =  12.


Аналоги к заданию № 513103: 513104 513105 639486 ... Все

Источник: Ма­те­ри­а­лы для экс­пер­тов ЕГЭ 2016

Пройти тестирование по этим заданиям