Вариант № 11672190

Демонстрационная версия ЕГЭ—2017 по математике. Профильный уровень.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задания Д2 № 514745

Поезд отправился из Санкт-Петербурга в 23 часа 50 минут и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?


Ответ:

2
Задания Д1 № 514746

На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией. Определите по рисунку, сколько месяцев из данного периода средняя температура была больше 18 градусов Цельсия.


Ответ:

3
Задания Д4 № 514747

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Ответ:

4
Тип 2 № 514748

В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.


Ответ:

5
Тип 1 № 514749

Найдите корень уравнения 3x − 5 = 81.


Ответ:

6
Тип 3 № 514750

Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.


Ответ:

7
Тип 6 № 514751

На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, ..., x9. Среди этих точек найдите все точки, в которых производная функции y = f(x) отрицательна. В ответе укажите количество найденных точек.


Ответ:

8
Тип 5 № 514752

В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 2 раза больше первого? Ответ выразите в см.


Ответ:

9
Тип 4 № 514753

Найдите  синус 2 альфа , если  косинус альфа = 0,6 и  Пи меньше альфа меньше 2 Пи .


Ответ:

10
Тип 7 № 514754

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость погружения батискафа вычисляется по формуле  v = c дробь: числитель: f минус f_0 , знаменатель: f плюс f_0 конец дроби , где c=1500 м/с — скорость звука в воде, f_0  — частота испускаемых импульсов, f — частота отражённого от дна сигнала, регистрируемая приёмником (в МГц). Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 2 м/с.


Ответ:

11
Тип 8 № 514755

Весной катер идёт против течения реки в  целая часть: 1, дробная часть: числитель: 2, знаменатель: 3 раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в  целая часть: 1, дробная часть: числитель: 1, знаменатель: 2 раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).


Ответ:

12
Тип 11 № 514756

Найдите точку максимума функции y = \ln(x плюс 4) в квадрате плюс 2x плюс 7.


Ответ:

13
Тип 12 № 514757

а) Решите уравнение  косинус 2x= 1 минус косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби минус x правая круглая скобка .

б) Укажите корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби ; минус Пи правая круглая скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 13 № 514758

Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N— середины рёбер AA1 и A1C1 соответственно.

а) Докажите, что прямые BM и MN перпендикулярны.

б) Найдите угол между плоскостями BMN и ABB1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 14 № 514759

Решите неравенство  дробь: числитель: 9 в степени x минус 2 умножить на 3 в степени (x плюс 1) плюс 4, знаменатель: 3 в степени x минус 5 конец дроби плюс дробь: числитель: 2 умножить на 3 в степени (x плюс 1) минус 51, знаменатель: 3 в степени x минус 9 конец дроби \leqslant3 в степени x плюс 5.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 16 № 514760

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 15 № 514761

15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:

— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

 

Дата15.0115.0215.0315.0415.0515.0615.07
Долг
(в млн рублей)
10,60,40,30,20,10

 

Найдите наибольшее значение r , при котором общая сумма выплат будет меньше 1,2 млн рублей.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 17 № 514762

Найдите все положительные значения a , при каждом из которых система

 система выражений (|x| минус 5) в квадрате плюс (y минус 4) в квадрате =9,(x плюс 2) в квадрате плюс y в квадрате =a в квадрате конец системы .

имеет единственное решение.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 18 № 514763

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно −3, среднее арифметическое всех положительных из них равно 4, а среднее арифметическое всех отрицательных из них равно −8.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.