Задания
Версия для печати и копирования в MS Word
Задание 11 № 113501

 

Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 8 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 12 км/ч больше скорости другого?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 14 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 21 км/ч больше скорости другого?

Пусть v км/ч — скорость первого мотоциклиста, тогда скорость второго мотоциклиста равна v + 21 км/ч. Пусть первый раз мотоциклисты поравняются через t часов. Для того, чтобы мотоциклисты поравнялись, более быстрый должен преодолеть изначально разделяющее их расстояние, равное половине длины трассы. Поэтому

(v плюс 21)t минус vt=7 равносильно 21t=7 равносильно t= дробь, числитель — 1, знаменатель — 3 .

Таким образом, мотоциклисты поравняются через t= дробь, числитель — 1, знаменатель — 3  часа или через 20 минут.

 

Ответ: 20.

 

Приведём другое решение.

Быстрый мотоциклист движется относительно медленного со скоростью 21 км в час, и должен преодолеть разделяющие их 7 км. Следовательно, на это ему потребуется одна треть часа.