СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 6 № 27773

В прямоугольном треугольнике угол между высотой и медианой, проведенными из вершины прямого угла, равен 40°. Найдите больший из острых углов этого треугольника. Ответ дайте в градусах.

Решение.

В прямоугольном треугольнике CHM угол C равен 40°, поэтому угол M равен 50°. Треугольник АСВ прямоугольный, CM — медиана, опущенная из вершины прямого угла, следовательно, CM = MB, и углы B и MCB равны как углы при основании равнобедренного треугольника. Тогда:

Ответ: 65.

Классификатор базовой части: 5.1.1 Треугольник
Спрятать решение · ·
Хизир Аушев 25.02.2013 14:11

Простите, пожалуйста, у вас верно, что CM=MB, если медиана в треугольнике ABC?

Служба поддержки

Решение верно.