Расстояние между параллельными прямыми равно 12. На одной из них лежит точка C, а на другой — точки A и B, причем треугольник ABC — равнобедренный и его боковая сторона равна 13. Найдите радиус окружности, вписанной в треугольник ABC.
Заметим, что либо AC = BC, либо AB = BC (или AB = AC).
Первый случай (рис. 1). AC = BC = 13. Пусть Н — точка касания вписанной окружности треугольника ABC с основанием АB, r1 — радиус окружности, вписанной в треугольник ABC. Тогда CH — высота и медиана треугольника ABC. Из прямоугольного треугольника AHC находим, что
Тогда
Из равенства 18r1 = 60 находим, что
Второй случай. (рис. 2). Пусть AB = BC = 13, CH — высота треугольника ABC, r2 — радиус окружности, вписанной в треугольник ABC.
Тогда
Из прямоугольного треугольника ACH находим, что
Из равенства получаем, что
Рассмотрим третий случай.
Третий случай состоит в том, что BC = AB и эти стороны образуют острый угол. Тогда высота CH будет лежать внутри треугольника ABC и В этом случаем радиус будет равен
Ответ:

