СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости



Задания
Версия для печати и копирования в MS Word
Задания Д6 C2 № 501690

В правильной четырехугольной пирамиде MABCD с вершиной M стороны основания равны 15, а боковые ребра равны 16. Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.

Решение.

Пусть точка E — середина ребра MD. Отрезок BE пересекает плоскость MAC в точке P. В треугольнике MBD точка Р является точкой пересечения медиан, следовательно, MP:РО = 2 : 1, где O — центр основания пирамиды. Отрезок FG параллелен AC и проходит через точку P (точка F принадлежит ребру MA, G — ребру MC), откуда

 

Четырёхугольник BFEG — искомое сечение. Отрезок BE — медиана треугольника MBD, значит,

Поскольку прямая BD перпендикулярна плоскости MAC, диагонали BE и FG четырёхугольника BFEG перпендикулярны, следовательно,

 

Ответ:


Аналоги к заданию № 501690: 501945 512883 512889 501730 501985 510707 511367 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 03.06.2013. Ос­нов­ная волна. Центр. Ва­ри­ант 1.