Задания
Версия для печати и копирования в MS Word
Тип 14 № 511402
i

Бо­ко­вое ребро пра­виль­ной тре­уголь­ной пи­ра­ми­ды SABC равно 10, а ко­си­нус угла ASB при вер­ши­не бо­ко­вой грани равен   дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби . Точка M  — се­ре­ди­на ребра SC.

а)  До­ка­жи­те, что BC \perp SA.

б)  Най­ди­те ко­си­нус угла между пря­мы­ми BM и SA.

Спрятать решение

Ре­ше­ние.

а)  Про­ек­ция точки S на плос­кость ABC  — точка H, центр пра­виль­но­го тре­уголь­ни­ка ABC. По­это­му пря­мая AH со­дер­жит вы­со­ту тре­уголь­ни­ка ABC, зна­чит, AH \perp BC, тогда, по тео­ре­ме о трех пер­пен­ди­ку­ля­рах, SA \perp BC.

 

б)  Пусть N  — се­ре­ди­на AC. По­сколь­ку MN||SA по тео­ре­ме о сред­ней линии тре­уголь­ни­ка, угол BMN ис­ко­мый. Найдём сто­ро­ны тре­уголь­ни­ка BMN. По тео­ре­ме о сред­ней линии тре­уголь­ни­ка MN= дробь: чис­ли­тель: SA, зна­ме­на­тель: 2 конец дроби =5. По тео­ре­ме ко­си­ну­сов из тре­уголь­ни­ка BSM по­лу­ча­ем:

BM= ко­рень из: на­ча­ло ар­гу­мен­та: 100 плюс 25 минус 2 умно­жить на 10 умно­жить на 5 умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби конец ар­гу­мен­та = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 475 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби .

Чтобы найти BN, найдём сна­ча­ла сто­ро­ну ос­но­ва­ния по тео­ре­ме ко­си­ну­сов из тре­уголь­ни­ка BSC:

BC= ко­рень из: на­ча­ло ар­гу­мен­та: 100 плюс 100 минус 2 умно­жить на 10 умно­жить на 10 умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: 16 конец дроби конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 375, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та

Те­перь BN= ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 1125, зна­ме­на­тель: 8 конец дроби конец ар­гу­мен­та как вы­со­та в рав­но­сто­рон­нем тре­уголь­ни­ке со сто­ро­ной  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 375, зна­ме­на­тель: 2 конец дроби конец ар­гу­мен­та . Оста­лось вы­чис­лить ко­си­нус нуж­но­го угла:

 ко­си­нус \angle NMB= дробь: чис­ли­тель: дробь: чис­ли­тель: 475, зна­ме­на­тель: 4 конец дроби плюс 25 минус дробь: чис­ли­тель: 1125, зна­ме­на­тель: 8 конец дроби , зна­ме­на­тель: 2 умно­жить на 5 умно­жить на дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 475 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 ко­рень из: на­ча­ло ар­гу­мен­та: 19 конец ар­гу­мен­та конец дроби .

 

Ответ:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 ко­рень из: на­ча­ло ар­гу­мен­та: 19 конец ар­гу­мен­та конец дроби .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та a) и обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те б)3
По­лу­чен обос­но­ван­ный ответ в пунк­те б)

ИЛИ

име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а) и при обос­но­ван­ном ре­ше­нии пунк­та б) по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошиб­ки

2
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а)

ИЛИ

при обос­но­ван­ном ре­ше­нии пунк­та б) по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошиб­ки,

ИЛИ

обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те б) с ис­поль­зо­ва­ни­ем утвер­жде­ния пунк­та а), при этом пункт а) не вы­пол­нен

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, при­ведённых выше0
Мак­си­маль­ный балл3

Аналоги к заданию № 505387: 505408 511402 Все

Методы геометрии: Тео­ре­ма ко­си­ну­сов
Классификатор стереометрии: Пра­виль­ная тре­уголь­ная пи­ра­ми­да, Угол между пря­мы­ми