Задания
Версия для печати и копирования в MS WordЗадание 8 № 76189
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 10. Найдите площадь боковой поверхности исходной призмы.
Решение.
Каждая из боковых граней исходной призмы вдвое больше соответствующей грани отсечённой призмы. Следовательно, площадь боковой поверхности исходной призмы вдвое больше площади поверхности отсечённой призмы. Поэтому она равна 20.
Ответ: 20.
подскажите, пожалуйста, почему площадь маленького треугольника вдвое меньше площади большого треугольника. Есть теорема о том, что отношение площадей подобных треугольников равно квадрату коэффициента подобия. Т.е. в нашем случае маленький треугольник в 4 раза меньше большого. У меня задача не выходит ((((
Добрый день!
Площадь боковой поверхности призмы равна произведению периметра основания на высоту боковой грани. Высота боковой грани у исходной призмы и отсеченной призм совпадает. Поэтому площади боковых граней относятся как периметры оснований. Треугольники в основании исходной и отсеченной призм подобны, все их стороны относятся как 1 : 2. Поэтому периметр основания отсеченной призмы вдвое меньше исходного. Следовательно, площадь боковой поверхности исходной призмы равна 20