А. Ларин. Тренировочный вариант № 364.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной призме ABCDA1B1C1D1 стороны основания равны 4, боковые ребра равны 6. Точка M — середина ребра CC1, на ребре BB1 отмечена точка N, такая, что BN : NB1 = 1 : 2.
а) Докажите, что плоскость AMN делит ребро DD1 в отношении 1 : 5, считая от точки D.
б) Найдите угол между плоскостями ABC и AMN.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Строительство нового завода стоит 140 млн руб. Затраты на производство
На следующей странице вам будет предложено проверить их самостоятельно.
В остроугольном треугольнике ABC проведены высоты BB1 и CC1. Прямые B1C1 и BC пересекаются в точке P.
а) Докажите, что треугольники PBC1 и PB1C подобны.
б) Найдите расстояние от вершины A до точки пересечения высот треугольника ABC, если BP = BB1, ∠ABC = 80°, а точка B лежит между C и P.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых система уравнений
имеет более одного решения.
На следующей странице вам будет предложено проверить их самостоятельно.
Вова задумал натуральное число а и посчитал сумму его цифр, эту сумму он обозначил b. Затем он посчитал сумму цифр числа b и обозначил ее через с. Оказалось, что среди чисел a, b и с нет одинаковых.
а) Может ли a + b + c = 3000?
б) Может ли a + b + c = 2000?
в) Сколько существует четырехзначных чисел а, для которых c = 4?
На следующей странице вам будет предложено проверить их самостоятельно.