Вариант № 43243819

А. Ларин. Тренировочный вариант № 378.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 625312
i

а)  Ре­ши­те урав­не­ние 2 ко­си­нус левая круг­лая скоб­ка 2x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка минус ко­си­нус 2x= ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та синус x.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 14 № 625313
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 ребра BC  =  8, CD  =  3, BB1  =  6. Точка Q  — се­ре­ди­на ребра CC1.

а)  До­ка­жи­те, что угол между плос­ко­стя­ми BD1Q и ABC равен  арк­ко­си­нус дробь: чис­ли­тель: 8, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 137 конец ар­гу­мен­та конец дроби .

б)  Най­ди­те рас­сто­я­ние от точки A до плос­ко­сти BD1Q.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 15 № 625314
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: 36 в сте­пе­ни x минус 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 3, зна­ме­на­тель: 6 в сте­пе­ни x минус 5 конец дроби плюс дробь: чис­ли­тель: 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 39, зна­ме­на­тель: 6 в сте­пе­ни x минус 7 конец дроби мень­ше или равно 6 в сте­пе­ни x плюс 5.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 625315
i

16 ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на не­ко­то­рую сумму на 21 месяц. Усло­вия его воз­вра­та та­ко­вы:

—  1‐⁠го числа каж­до­го ме­ся­ца долг уве­ли­чи­ва­ет­ся на 2% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

—  со 2‐⁠го по 14‐⁠е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить одним пла­те­жом часть долга;

—  на 15‐⁠е число каж­до­го ме­ся­ца с 1‐⁠го по 20‐⁠й долг дол­жен умень­шать­ся на 6 тысяч руб­лей;

—  к 15‐⁠му числу 21‐⁠го ме­ся­ца долг дол­жен быть по­га­шен пол­но­стью.

Сколь­ко тысяч руб­лей дол­жен со­став­лять долг на 15‐⁠е число 20‐⁠го ме­ся­ца, если общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та со­ста­вит 187,8 тысяч руб­лей?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 17 № 625316
i

В тре­уголь­ни­ке ABC ме­ди­а­ны AA1, BB1 и CC1 пе­ре­се­ка­ют­ся в точке O. Точки K, L, M при­над­ле­жат от­рез­кам AA1, BB1 и CC1 со­от­вет­ствен­но, при­чем AK  =  KA1, BL : LB1  =  1 : 4, CM : MC1  =  1 : 3. Пло­щадь тре­уголь­ни­ка ABC равна 200.

а)  До­ка­жи­те, что OL : BB1  =  7 : 15.

б)  Най­ди­те пло­щадь тре­уголь­ни­ка KLM.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 18 № 625317
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние

 ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 4x плюс 4a минус a в квад­ра­те конец ар­гу­мен­та =0

имеет ровно один ко­рень на от­рез­ке [0; 2].


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 625318
i

На­ту­раль­ное число будем на­зы­вать сим­мет­рич­ным, если оно сов­па­да­ет с чис­лом, за­пи­сан­ным теми же циф­ра­ми в об­рат­ном по­ряд­ке.

а)  Будет ли сим­мет­рич­ное число с чет­ным ко­ли­че­ством цифр де­лить­ся на 11?

б)  К трех­знач­но­му числу при­пи­шем спра­ва это же число. Будет ли по­лу­чен­ное ше­сти­знач­ное число точ­ным квад­ра­том?

в)  Какие ше­сти­знач­ные сим­мет­рич­ные числа де­лят­ся на 77? Сколь­ко всего таких чисел?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.