А. Ларин. Тренировочный вариант № 387.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной призме MNPQM1N1P1Q1 сторона основания равна 11, а боковое ребро — 15. На ребрах M1Q1, M1N1 и PQ взяты точки X, Y, Z соответственно так, что
а) Пусть C — точка пересечения плоскости XYZ c ребром PN. Докажите, что XYCZ — прямоугольник.
б) Найдите площадь сечения призмы плоскостью XYZ.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
В банк помещен вклад 64 000 рублей под 25% годовых. В конце каждого из первых трех лет после начисления процентов вкладчик дополнительно клал на счет одну и ту же фиксированную сумму. К концу четвертого года после начисления процентов оказалось, что вклад составляет 385 000 рублей. Какую сумму в рублях ежегодно добавлял вкладчик?
На следующей странице вам будет предложено проверить их самостоятельно.
На продолжении стороны AC за вершину A треугольника ABC отложен отрезок AD, равный стороне AB. Прямая, проходящая через точку A параллельно BD, пересекает сторону BC в точке M.
а) Докажите, что AM — биссектриса угла BAC.
б) Найдите площадь трапеции AMBD, если площадь треугольника ABC равна 144 и известно отношение AC : AB = 3 : 1.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых уравнение
имеет ровно два решения.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано 30 натуральных чисел (числа могут повторяться), каждое из которых либо зеленого, либо красного цвета. Каждое зеленое число кратно 3, а каждое красное число кратно 7. При этом все зеленые числа различны и все красные различны; какое‐то зеленое может равняться какому‐то красному числу.
а) Может ли сумма написанных чисел быть меньше если все числа на доске кратны 3?
б) Может ли ровно одно число на доске быть красным, если сумма написанных чисел равна 1067?
в) Какое наименьшее количество красных чисел может быть на доске, если сумма написанных чисел равна 1067?
На следующей странице вам будет предложено проверить их самостоятельно.