≡ математика
сайты - меню - вход - новости




Вариант № 5410693

А. Ларин: Тре­ни­ро­воч­ный вариант № 37.

Ответом к заданиям 1—12 является целое число или конечная десятичная дробь. Дробную часть от целой отделяйте десятичной запятой. Единицы измерений писать не нужно.


Если ва­ри­ант задан учителем, вы можете вписать ответы на задания части С или загрузить их в систему в одном из графических форматов. Учитель уви­дит ре­зуль­та­ты вы­пол­не­ния заданий части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задания Д5 C1 № 506062

а) Решите уравнение

б) Найдите все корни на промежутке


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д7 C2 № 506063

В правильной четырехугольной пирамиде с вершиной стороной основания равной 6 и боковым ребром 5, проведена плоскость через середины ребер и В пирамиду вписан шар. Найти площадь сечения шара плоскостью


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д10 C3 № 506064

Решите систему неравенств


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д12 C4 № 506065

В равнобедренном треугольнике ABC на прямой BC отмечена точка D так, что угол CAD равен углу ABD. Найдите длину отрезка AD, если боковая сторона треугольника ABC равна 5, а его основание равно 6.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д14 C6 № 506066

Найдите все значения параметра a, при которых неравенство

имеет единственное решение.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задание 19 № 506067

На шести елках сидят шесть сорок — по одной на каждой елке. Елки растут с интервалом в 10 м. Если какая-то сорока перелетает с одной елки на другую, то какая-нибудь, другая сорока обязательно перелетает на столько же метров, но в обратном направлении.

а) Могут ли все сороки собраться на одной елке?

б) А если сорок и елок семь?

в) А если елки стоят по кругу?


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.