Вариант № 6492216

А. Ларин: Тренировочный вариант № 87.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задания Д5 C1 № 508107

а) Решите уравнение 2{{ синус } в степени 2 }x плюс дробь, числитель — 1, знаменатель — {{ косинус в степени 2 }x}=3;

б) Найдите все корни на промежутке  левая квадратная скобка минус дробь, числитель — Пи , знаменатель — 2 ; дробь, числитель — 3 Пи , знаменатель — 2 правая круглая скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Задания Д7 C2 № 508108

Известно, что AB, AC, AD, DE, DF — рёбра куба. Через вершины E, F и середины рёбер AB и AC проведена плоскость P, делящая шар, вписанный в куб, на две части.

а) Постройте плоскость P.

б) Найдите отношение объёма меньшей части шара к объёму всего шара.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Задания Д9 C3 № 508109

Решите неравенство  корень из { 1 минус {{\log }_{5}}({{x} в степени 2 } минус 2x плюс 2)} меньше {{\log }_{5}}(5{{x} в степени 2 } минус 10x плюс 10).


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Задания Д12 C4 № 508110

Хорда AB стягивает дугу окружности, равную 120°. Точка С лежит на этой дуге, а точка D лежит на хорде AB. При этом AD = 2, BD = 1, DC = корень из 2 .

а) Докажите, что угол ADC равен  дробь, числитель — знаменатель — p i6.

б) Найдите площадь треугольника ABC.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Задания Д14 C6 № 508111

Найти все значения параметра a, при которых больший корень уравнения {{x} в степени 2 } плюс дробь, числитель — x плюс 4, знаменатель — корень из { 3 } синус 2a минус 16=0 на  корень из { дробь, числитель — 2, знаменатель — 3 } больше, чем квадрат разности корней уравнения {{x} в степени 2 } минус x синус a плюс дробь, числитель — {{ косинус } в степени 2 }a, знаменатель — 4 минус 1=0.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Задание 19 № 508112

За победу в шахматной партии начисляют 1 очко, за ничью — 0,5 очка, за проигрыш — 0 очков. В турнире принимают участие m мальчиков и d девочек, причём каждый играет с каждым дважды.

а) Каково наибольшее количество очков, которое в сумме могли набрать девочки, если m = 2, d = 2?

б) Какова сумма набранных всеми участниками очков, если m + d = 10?

в) Каковы все возможные значения d, если известно, что в сумме мальчики набрали ровно в 3 раза больше очков, чем девочки?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.