А. Ларин: Тренировочный вариант № 68.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Найдите все корни на промежутке
На следующей странице вам будет предложено проверить их самостоятельно.
В основании пирамиды лежит треугольник со сторонами 7, 8, 9. Боковые рёбра пирамиды наклонены к плоскости основания под углом 60 градусов. Найдите высоту пирамиды.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите систему неравенств
На следующей странице вам будет предложено проверить их самостоятельно.
В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Радиусы окружностей, вписанных в треугольники ACD и BCD, равны 0,6 и 0,8.
а) Докажите подобие треугольников ACD и BCD, ACD и ABC.
б) Найдите радиус окружности, вписанной в треугольник ABC.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все пары действительных чисел a и b, при которых уравнение
имеет хотя бы одно решение x.
На следующей странице вам будет предложено проверить их самостоятельно.
Имеется семь стаканов с водой: первый стакан заполнен водой наполовину, второй — на треть, третий — на четверть, четвертый — на одну пятую, пятый — на одну восьмую, шестой — на одну девятую, и седьмой — на одну десятую. Разрешается переливать всю воду из одного стакана в другой или переливать воду из одного стакана в другой до тех пор, пока он не заполнится доверху. Может ли после нескольких переливаний какой‐нибудь стакан оказаться заполненным
а) на одну двенадцатую;
б) на одну шестую?
На следующей странице вам будет предложено проверить их самостоятельно.