А. Ларин: Тренировочный вариант № 91.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие интервалу
На следующей странице вам будет предложено проверить их самостоятельно.
На боковых ребрах правильной треугольной призмы
расположены точки
и М соответственно. Известно, что угол между прямыми KL и АВ равен
а угол между прямым КМ и АС –
а) Постройте плоскость, проходящую через точки и М.
б) Найдите угол между этой плоскостью и плоскостью основания АВС.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В равнобедренном треугольнике ABC сторона AC — основание. На продолжении стороны CB за точку В отмечена точка D так, что угол CAD равен углу ABD.
а) Докажите, что AB биссектриса угла CAD.
б) Найдите длину отрезка AD, если боковая сторона треугольника АВС равна 5, а его основание равно 6.
На следующей странице вам будет предложено проверить их самостоятельно.
Два брокера купили акции одного достоинства на сумму 3640 р. Когда цена на эти акции возросла, они продали часть акций на сумму 3927 р. Первый брокер продал 75% своих акций, а второй 80% своих. При этом сумма от продажи акций, полученная вторым брокером, на 140% превысила сумму, полученную первым брокером. На сколько процентов возросла цена одной акции?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения а, при каждом из которых функция принимает значение, равное 2, в двух различных точках.
На следующей странице вам будет предложено проверить их самостоятельно.
а) Представьте число 2015 в виде суммы нескольких (не менее двух) последовательных натуральных чисел.
б) Найдите количество способов представления числа 2015 в виде суммы нескольких (не менее двух) последовательных натуральных чисел.
в) Можно ли число 2015 представить в виде суммы нескольких (не менее двух) последовательных нечетных натуральных чисел?
На следующей странице вам будет предложено проверить их самостоятельно.