СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Варианты заданий
Версия для печати и копирования в MS Word
1
Задание 19 № 501949

Задумано не­сколь­ко (не обя­за­тель­но различных) на­ту­раль­ных чисел. Эти числа и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке неубывания. Если какое-то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, стираются. Например, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 2, 3, 4, 5, 6, 7.

б) Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?

в) При­ве­ди­те все при­ме­ры за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 7, 9, 11, 14, 16, 18, 20, 21, 23, 25, 27, 30, 32, 34, 41.

Решение · ·

2
Задание 19 № 501989

Задумано не­сколь­ко (не обя­за­тель­но различных) на­ту­раль­ных чисел. Эти числа и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке неубывания. Если какое-то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, стираются. Например, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 2, 4, 6, 8.

б) Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22?

в) При­ве­ди­те все при­ме­ры за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 9, 10, 11, 19, 20, 21, 22, 30, 31, 32, 33, 41, 42, 43, 52.

Решение · ·

3
Задание 19 № 502298

Задумано не­сколь­ко (не обя­за­тель­но различных) на­ту­раль­ных чисел. Эти числа и все их воз­мож­ные суммы (по 2, по 3 и т.д.) вы­пи­сы­ва­ют на доске в по­ряд­ке неубывания. Если какое-то число n, вы­пи­сан­ное на доске, по­вто­ря­ет­ся несколько раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, стираются. Например, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) Приведите при­мер задуманных чисел, для ко­то­рых на доске будет за­пи­сан набор 3, 6, 9, 12, 15.

б) Существует ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 17, 18, 19, 21, 23?

в) Приведите все при­ме­ры задуманных чисел, для ко­то­рых на доске будет за­пи­сан набор 8, 9, 10, 17, 18, 19, 20, 27, 28, 29, 30, 37, 38, 39, 47.


4
Задание 19 № 521705

На листочке написано несколько натуральных чисел, среди которых могут быть одинаковые. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое‐то число m, выписываемое на доску, посторяется несколько раз, то на доске оставляется только одно такое число m, а все остальные числа, равные m, стираются. Например, если задуманы числа 2,3,4,5, то на доске будет записан набор 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14.

а) Приведите пример записанных на листочке чисел, при которых на доске будет записан набор 2, 4, 6, 8.

б) Существует ли пример таких записанных на листочке чисел, для которых на доске записан набор чисел 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22?

в) Приведите все примеры записанных на листочке чисел, для которых на доске будет записан набор чисел 9, 10, 11, 19, 20, 21, 22, 30, 31, 32, 33, 41, 42, 43, 52.